Browse > Article
http://dx.doi.org/10.3857/roj.2017.00066

Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy  

Kim, Kangpyo (Department of Radiation Oncology, Yonsei University College of Medicine)
Lee, Jeongshim (Department of Radiation Oncology, Yonsei University College of Medicine)
Cho, Yeona (Department of Radiation Oncology, Yonsei University College of Medicine)
Chung, Seung Yeun (Department of Radiation Oncology, Yonsei University College of Medicine)
Lee, Jason Joon Bock (Department of Radiation Oncology, Yonsei University College of Medicine)
Lee, Chang Geol (Department of Radiation Oncology, Yonsei University College of Medicine)
Cho, Jaeho (Department of Radiation Oncology, Yonsei University College of Medicine)
Publication Information
Radiation Oncology Journal / v.35, no.2, 2017 , pp. 163-171 More about this Journal
Abstract
Purpose: Although stereotactic ablative body radiotherapy (SABR) is widely used therapeutic technique, predictive factors of radiation pneumonitis (RP) after SABR remain undefined. We aimed to investigate the predictive factors affecting RP in patients with primary or metastatic lung tumors who received SABR. Materials and Methods: From 2012 to 2015, we reviewed 59 patients with 72 primary or metastatic lung tumors treated with SABR, and performed analyses of clinical and dosimetric variables related to symptomatic RP. SABR was delivered as 45-60 Gy in 3-4 fractions, which were over 100 Gy in BED when the ${\alpha}/{\beta}$ value was assumed to be 10. Tumor volume and other various dose volume factors were analyzed using median value as a cutoff value. RP was graded per the Common Terminology Criteria for Adverse Events v4.03. Results: At the median follow-up period of 11 months, symptomatic RP was observed in 13 lesions (12 patients, 18.1%), including grade 2 RP in 11 lesions and grade 3 in 2 lesions. Patients with planning target volume (PTV) of ${\leq}14.35mL$ had significantly lower rates of symptomatic RP when compared to others (8.6% vs. 27%; p = 0.048). Rates of symptomatic RP in patients with internal gross tumor volume (iGTV) >4.21 mL were higher than with ${\leq}4.21mL$ (29.7% vs. 6.1%; p = 0.017). Conclusions: The incidence of symptomatic RP following treatment with SABR was acceptable with grade 2 RP being observed in most patients. iGTV over 4.21 mL and PTV of over 14.35 mL were significant predictive factors related to symptomatic RP.
Keywords
Lung cancer; Radiation pneumonitis; Stereotactic ablative body radiotherapy; Risk factors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rancati T, Ceresoli GL, Gagliardi G, Schipani S, Cattaneo GM. Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol 2003;67:275-83.   DOI
2 Shi A, Zhu G, Wu H, Yu R, Li F, Xu B. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol 2010;5:35.   DOI
3 Ong CL. Volumetric modulated arc therapy for stereotactic body radiotherapy: planning considerations, delivery accuracy and efficiency [master's thesis]. Amsterdam: Vrije Universiteit; 2012.
4 Ong CL, Palma D, Verbakel WF, Slotman BJ, Senan S. Treatment of large stage I-II lung tumors using stereotactic body radiotherapy (SBRT): planning considerations and early toxicity. Radiother Oncol 2010;97:431-6.   DOI
5 Hof H, Rhein B, Haering P, Kopp-Schneider A, Debus J, Herfarth K. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiother Oncol 2009;93:419-23.   DOI
6 Yamashita H, Nakagawa K, Nakamura N, et al. Exceptionally high incidence of symptomatic grade 2-5 radiation pneumonitis after stereotactic radiation therapy for lung tumors. Radiat Oncol 2007;2:21.   DOI
7 Ricardi U, Filippi AR, Guarneri A, et al. Dosimetric predictors of radiation-induced lung injury in stereotactic body radiation therapy. Acta Oncol 2009;48:571-7.   DOI
8 Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys 2014;88:254-62.   DOI
9 Guckenberger M, Baier K, Polat B, et al. Dose-response relationship for radiation-induced pneumonitis after pulmonary stereotactic body radiotherapy. Radiother Oncol 2010;97:65-70.   DOI
10 Borst GR, Ishikawa M, Nijkamp J, et al. Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. Radiother Oncol 2009;91:307-13.   DOI
11 Radiation Therapy Oncology Group. RTOG 0813: Seamless phase I/II study of stereotactic lung radiotherapy (SBRT) for early stage, centrally located, non-small cell lung cancer (NSCLC) in medically inoperable patients. Philadelphia, PA: Radiation Therapy Oncology Group; 2010.
12 Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 2010;37:4078-101.   DOI
13 US Department of Health and Human Services. Common terminology criteria for adverse events (CTCAE) version 4.0. Bethesda, MD: National Cancer Institute; 2009.
14 Huang K, Dahele M, Senan S, et al. Radiographic changes after lung stereotactic ablative radiotherapy (SABR): can we distinguish recurrence from fibrosis? A systematic review of the literature. Radiother Oncol 2012;102:335-42.   DOI
15 Chang JY, Senan S, Paul MA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-smallcell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 2015;16:630-7.   DOI
16 Matsuo Y, Shibuya K, Nakamura M, et al. Dose-volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 2012;83:e545-9.   DOI
17 Bertke MH, Bhatt NH, Hatch ME, Bousamra M, Van Berkel V, Dunlap NE. Comparative outcomes of stereotactic ablative radiation therapy (SABR) as salvage for parenchymal lung recurrences following initial curative surgery versus de-novo SABR. Int J Radiat Oncol Biol Phys 2015;93:E419-E420.
18 Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 2006;24:4833-9.   DOI
19 Siva S, MacManus M, Ball D. Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol 2010;5:1091-9.   DOI
20 Marks LB, Bentzen SM, Deasy JO, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 2010;76(3 Suppl):S70-6.   DOI
21 Barriger RB, Forquer JA, Brabham JG, et al. A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2012;82:457-62.   DOI
22 Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010;303:1070-6.   DOI
23 Takahashi W, Yamashita H, Kida S, et al. Verification of planning target volume settings in volumetric modulated arc therapy for stereotactic body radiation therapy by using intreatment 4-dimensional cone beam computed tomography. Int J Radiat Oncol Biol Phys 2013;86:426-31.   DOI
24 van der Voort van Zyp NC, Prevost JB, Hoogeman MS, et al. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 2009;91:296-300.   DOI
25 Nagata Y, Hiraoka M, Shibata T, et al. Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan Clinical Oncology Group Study JCOG0403. Int J Radiat Oncol Biol Phys 2015;93:989-96.   DOI
26 McGarry RC, Papiez L, Williams M, Whitford T, Timmerman RD. Stereotactic body radiation therapy of early-stage non-smallcell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 2005;63:1010-5.   DOI
27 Stauder MC, Macdonald OK, Olivier KR, et al. Early pulmonary toxicity following lung stereotactic body radiation therapy delivered in consecutive daily fractions. Radiother Oncol 2011;99:166-71.   DOI
28 Huang K, Palma DA; IASLC Advanced Radiation Technology Committee. Follow-up of patients after stereotactic radiation for lung cancer: a primer for the nonradiation oncologist. J Thorac Oncol 2015;10:412-9.   DOI
29 Claude L, Perol D, Ginestet C, et al. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 2004;71:175-81.   DOI
30 Hernando ML, Marks LB, Bentel GC, et al. Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001;51:650-9.   DOI