Browse > Article
http://dx.doi.org/10.5909/JBE.2020.25.4.587

Quantization Method for Normalization of JPEG Pleno Hologram  

Kim, Kyung-Jin (Department of Electronic Material Engineering, Kwangwoon University)
Kim, Jin-Kyum (Department of Electronic Material Engineering, Kwangwoon University)
Oh, Kwan-Jung (ETRI)
Kim, Jin-Woong (ETRI)
Kim, Dong-Wook (Department of Electronic Material Engineering, Kwangwoon University)
Seo, Young-Ho (Department of Electronic Material Engineering, Kwangwoon University)
Publication Information
Journal of Broadcast Engineering / v.25, no.4, 2020 , pp. 587-597 More about this Journal
Abstract
In this paper, we analyze the normalization that occurs when processing digital hologram and propose an optimized quantization method. In JPEG Pleno, which standardizes the compression of holograms, full complex holograms are defined as complex numbers with 32-bit or 64-bit precision, and the range of values varies greatly depending on the method of hologram generation and object type. Such data with high precision and wide dynamic range are converted to fixed-point or integer numbers with lower precision for signal processing and compression. In addition, in order to reconstruct the hologram to the SLM (spatial light modulator), it is approximated with a precision of a value that can be expressed by the pixels of the SLM. This process can be refereed as a normalization process using quantization. In this paper, we introduce a method for normalizing high precision and wide range hologram using quantization technique and propose an optimized method.
Keywords
hologram; compression; normalization; quantization; reconstruction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dennis Gabor, "'A new microscopic principle", Nature, 161, pp. 777- 778, 1948.   DOI
2 P. Hariharan, "Basics of Holography", Cambridge University Press, May 2002.
3 W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, Al. Kumar Singh, M. Takeda, and M. Wilke, "Recent advances in digital holography [Invited]," Appl. Opt. 53, G44-G63, 2014.   DOI
4 H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993.
5 Y.H. Seo, Hyun-Jun Choi, and Dong-Wook Kim, "Lossy Coding Technique for Digital Holographic Signal", SPIE Optical Engineering, Vol. 45, No. 6, pp. 065802-1-065802-10, Jun. 2006.
6 Y.H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, S. H. Lee, and D. W. Kim, "Digital hologram compression technique by eliminating spatial correlations based on MCTF." Optics Communications, vol. 283, no. 21, pp. 4261-4270, Nov. 2010.   DOI
7 F. Dufaux, Y. Xing, Y. B. P. Popescu, and P. Schelkens, "Compression of digital holographic data: an overview." In Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics. vol. 9599, no. 95990I, pp. 1-11, Sep. 2015.
8 E. Darakis and T. J. Naughton, "Compression of digital hologram sequences using MPEG-4", SPIE Proc, vol. 7358, pp. 735811-1, May 2009.
9 J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, "Holographic data coding: Benchmarking and extending hevc with adapted transforms." IEEE Transactions on Multimedia, vol. 20, no. 2, pp. 282-297, Feb.2018   DOI
10 Y. H. Seo, H. J. Choi and D. W. Kim, "3D scanning-based compression technique for digital hologram video", Signal Processing: Image Communication, vol. 22, no. 2, pp. 144-156, Nov. 2006.
11 P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, "Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video." Journal of Optics, vol. 14, no. 12, pp. 1-7, Dec. 2012.
12 Y.H. Seo, Y. H. Lee, J. S. Yoo, and D. W. Kim, "Scalable hologram video coding for adaptive transmitting service." Applied optics, vol. 52, no. 1, pp. A254-A268, Jan. 2013.   DOI
13 JPEG Pleno https://jpeg.org/jpegpleno/
14 H. Gu Kim and Y. M. Ro, "Ultrafast layer based computer-generated hologram calculation with sparse template holographic fringe pattern for 3-D object," Opt. Express 25, 30418-30427, 2017.   DOI
15 H. Zhang, L. Cao, and G. Jin, "Computer-generated hologram with occlusion effect using layer-based processing," Appl. Opt. 56, F138-F143, 2017.   DOI
16 Logan A. Williams, Georges Nehmetallah, Rola Aylo, and Partha P. Banerjee, "Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms," Appl. Opt. 54, 1443-1452. 2015.   DOI
17 P. Su, W. Cao, J. Ma, Bi. Cheng, X. Liang, L. Cao, and G. Jin, "Fast Computer-Generated Hologram Generation Method for Three-Dimensional Point Cloud Model," J. Display Technol. 12, 1688-1694, 2016.   DOI
18 P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, "Review of fast methods for point-based computer-generated holography [Invited]," Photon. Res. 6, 837-846, 2018.   DOI
19 H. Yeom, Y. Ji, S. Kim, S. Ko, S. Kim, H. Zhang, B. Li, K. Shin, M. Askari, and J. Park, "Hologram synthesis with correct reflectance distribution in fully analytic mesh-based method," in Imaging and Applied Optics 2016, OSA Technical Digest (online), Optical Society of America, 2016.0
20 Y. Ju and J. Park, "Fast Generation of Mesh Based CGH in Head-Mounted Displays using Foveated Rendering Technique," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest, Optical Society of America, 2018.
21 S. Lee, H. Chang, H. Wey, and D. Nam, "Sampling and error analysis of radial symmetric interpolation for fast hologram generation," Appl. Opt. 55, A104-A110, 2016.   DOI
22 Chor Shen Tay, Ken Tanizawa, and Akira Hirose, "High-quality frame interpolation in computer generated holographic movies using coherent neural networks with a hybrid learning method," Appl. Opt. 47, 5221-5228, 2008.   DOI
23 P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, "Enhancement on the generation of sampled phase-only holograms," Chin. Opt. Lett. 13, 060901, 2015.   DOI
24 J. Kim, K. Kim, W. Kim, Y. Lee, K. Oh, J. Kim, D. Kim, Y. Seo, "Characteristic Analysis for Compression of Digital Hologram", JBE, Vol. 24, No. 1, pp.164-181, Jan. 2019.
25 Yuan Hong, Tielin Shi, Yichun Zhang, and Guanglan Liao, "Fringe contrast enhancement of digital off-axis hologram via sparse representation," Chin. Opt. Lett. 14, 060901, 2016.   DOI
26 Lingfeng Yu, Yingfei An, and Lilong Cai, "Numerical reconstruction of digital holograms with variable viewing angles," Opt. Express 10, 1250-1257, 2002.   DOI
27 Xin Li, Juan Liu, Tao Zhao, and Yongtian Wang, "Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation," Opt. Express 26, 2349-2358, 2018.   DOI
28 P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, "Encoding multiple holograms for speckle-noise reduction in optical display," Opt. Express 22, 25768-25775, 2014.   DOI
29 D. Hincapie, J. H.-Ramirez, and J. G.-Sucerquia, "Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms," Opt. Lett. 40, 1623-1626, 2015.   DOI
30 https://en.wikipedia.org/wiki/Quantization_(signal_processing)
31 https://en.wikipedia.org/wiki/A-law_algorithm
32 Gersho, Allen, and Robert M. Gray. Vector quantization and signal compression. Vol. 159. Springer Science & Business Media, 2012.
33 https://en.wikipedia.org/wiki/%CE%9C-law_algorithm