Browse > Article

Laser Ultrasonic Inspection of Environmental Barrier Coatings  

Murray, T.W. (Department of Aerospace and Mechaical Engineering 110 Cummington Street Boston University)
Balogun, O. (Department of Aerospace and Mechaical Engineering 110 Cummington Street Boston University)
Publication Information
Abstract
The mechanical properties of mullite $(3Al_2O_3\;2SiO_2)$ environmental barrier coatings are determined using a laser-based ultrasonic system. The waveforms generated by a laser source in mullite coatings in the $1-20{\mu}m$ thickness range are evaluated theoretically using the integral transform technique. It is shown that the laser source generated the two lowest order SAW modes in these systems. Experimental waveforms are generated using a 600ps pulsed Nd:YAG microchip laser and detected using a stabilized Michelson interferometer. The dispersion curves for the generated modes are extracted from the experimental data and the mechanical properties of the coatings are obtained by minimizing the error between the measured and calculated velocity values. The waveforms generated in mullite coatings agree well with theory and laser-based ultrasonics is shown to provide an effective tool for the nondestructive evaluation of ceramic coatings.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alleyne, D., and Cawley, P. (1991) A two-dimensional Fourier transform method for the measurement of propagating multimode signals, J. Acoust. Soc. Am. 89 (3), pp. 1159
2 Cheng, A., Murray, T. W., and Achenbach, J. D. (2001) Simulation of laser generated ultrasonic waves in layered plates, J. Acoust. Soc. Am. 110, (2) pp. 848
3 Duggal, A. R., Rogers, J. A. and Nelson, K. A. (1992) Real-time optical characterization of surface acoustic modes of polyimide thin-film coatings, J. Appl. Phys. 72(7), pp. 2823
4 Monchalin, J. P., Neron, C., Bussiere, J. F., Bouchard, P., Padioleau, C., Heon, R., Choquet, M., Aussel, J. D., G. Durou, and Nilson, G. (1998) Laser-ultrasonics: From the laboratory to the shop floor, Adv. Perform. Mater. 5 (1-2), pp. 7-23   DOI
5 Murray, T.W., Krishnaswamy, S., and Achenbach, J.D. (1999) Laser generation of ultrasound in films and coatings, Appl. Phys. Lett., 74(23), pp. 3561
6 Pecorari C., Lawrence, C. W., Roberts, S. G., and Briggs,G.A.D., (2000) Quantitative evaluation of surface damage in brittle materials by acoustic microscopy, Phil. Mag. A 80(11), pp. 2695
7 Pecorari, C. (2001) Attenuation and dispersion of rayleigh waves propagating on a cracked surface: an effective field approach, Ultrasonics 38, pp. 754-760
8 Schneider, D., Hammer, R., and Jurisch, M. (1999) Nondestructive testing of damage layers in GaAs wafers by surface acoustic waves, Semicond. Sci. and Technol. 14, pp. 93-98
9 Spicer, J.B. (1991) Laser Ultrasonics in Structures: Comprehensive Modeling Supporting Experiment, Ph.D. Thesis, Hopkins University
10 Thomsen, C., Grahn, H. T., Maris, H. J., and Tauc, J. (1986) Surface generation and detec- tion of phonons by picosecond light pulses, Phys. Rev. B 34(6), pp. 4129
11 Cho, H., Ogawa, S., Yamanaka, K., and Takemoto, M. (1998) Property evaluation of vapor deposited TiN film by the analysis of elastic waves, JSME Int. J. 41(3), pp. 439
12 Hutchins, D. A. (1986) Mechanisms of pulsed photoacoustic generation, Can. J. Phys. 64, pp. 1247-1264
13 Rogers, J.A. (2000) Optical Generation and Characterization of Acoustic waves in Thin Films: Fundamentals and Applications, Annu. Rev. Mater. Sci. 30, pp. 117-157   DOI   ScienceOn
14 Davis, S. J., Edwards, C., Taylor, G. S. and Palmer, S. B. (1993) Laser-Generated Ultrasound: its properties, mechanisms, and multifarious applications, J. Phys. D. 26(3), pp. 329-348
15 Farnell, G. W. and Adler, A. L. (1972) Elastic wave propagation in thin layers, in: Eds. Physical Acoustics, Principles and Methods, W. P. Mason Vol. 9, edited by Academic, NY
16 Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1986) Numerical Recipes, Cambridge University Press, NY
17 Ledbetter, H., Kim, S., Balzar, D., Crudele, S., and Kriven, W. (1998) Elastic Properties of Mullite, J. Am. Ceram. Soc. 81(4), pp. 1025-1028
18 Scruby, C. E. and Drain, L. E. (1990) Laser Ultrasonics, Techniques and Applications, Adam Hilger, N.Y.
19 Spicer, J. B., McKie, A. D. W., and Wagner, J.W. (1990) Quantitative theory for laser ultrasonic waves in a thin plate, Appl. Phys. Lett. 57(18), pp. 1882
20 Shen, Y. and Hess, P. (1997) Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer, J. Appl. Phys. 82(10), pp. 4758
21 Cheng, J., Wu, L., Zhang, S. (1994), Thermoelastic response of pulsed photothermal deformation of thin plates, J. Appl. Phys. 76 (2), pp. 716
22 McDonald, F. A. (1990) On the precursor in laser-generated ultrasound in metals, Appl. Phys. Lett. 56, pp. 230
23 Schneider, D., allendorf, H., Schwartz, T. (1995) Non-destructive evaluation of the mechanical behavior of TiN-coated steels by laser induced ultrasonic waves, Appl. Phys. A 61, pp. 277-284
24 Sanderson, T., Ume, c., and Jarzynski, J. (1997) Laser generated ultrasound: a thermoelastic analysis of the source, Ultrasonics 35, pp. 115-124