Browse > Article
http://dx.doi.org/10.15204/jkobgy2014.27.1.081

In Vitro Anti-bacterial and Anti-inflammatory Effects of Six Types of Herb Aqueous Extracts  

Jang, Se-Ran (Dept. of genecology, College of Oriental Medicine, Daegu Haany University)
Kim, Dong-Chul (Dept. of genecology, College of Oriental Medicine, Daegu Haany University)
Publication Information
The Journal of Korean Obstetrics and Gynecology / v.27, no.1, 2014 , pp. 81-100 More about this Journal
Abstract
Objectives: The object of this study was to observe the in vitro anti-bacterial and anti-inflammatory effects of six single aqueous herbal extracts-Quisqualis Fructus (QuF), Meliae Cortex (MeC), Arecae Semen (ArS), Crassirhizomae Rhizoma (CrR), Ulmi Pasta Semen(UlS), Torreyae Semen(ToS)- against Staphylococcus aureus (S. aureus) and Lipopolysaccharide(LPS)-activated Raw 264.7 cells. Methods: Anti-bacterial activities against S. aureus of aqueous extracts of QuF, MeC, ArS, CrR, UlS and ToS were detected using standard agar microdilution methods. In addition, the effects on the cell viability, prostaglandin $E_2$ ($PGE_2$), nitric oxide (NO), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$ and IL-6 productions of LPS activated Raw 264.7 cells were detected. The anti-bacterial and anti-inflammatory effects were respectively compared with lincomycin and piroxicam. Results: Minimal Inhibition Concentration (MIC) of aqueous extracts of QuF, MeC, ArS, CrR, UlS and ToS against S. aureus was respectively detected $5.625{\pm}4.075$ (3.125~12.500), $0.332{\pm}0.273$ (0.098~0.782), $1.094{\pm}0.428$ (0.782~1.563), $2.969{\pm}2.096$ (0.782~6.250), $9.375{\pm}4.419$ (3.125~12.500)>25 mg/ml. MIC of lincomycin was detected as $0.469{\pm}0.297$ (0.195~0.782) ${\mu}g/ml$ at same conditions. In addition, $ED_{50}$ against LPS-induced cell viabilities and cytokine releases of QuF, MeC, ArS, CrR, UlS and ToS was as follows - Cell viability: 66.370, 2.908, 1.747, 259.553, 18.150 and 34.160 mg/ml; NO production: 389.486, 0.294, 0.138, 523.060, 45.363 and 49.327 mg/ml; $PGE_2$ production: 114.271, 0.223, 0.046, 243.078, 8.829 and 28.947 mg/ml; TNF-${\alpha}$ production: 406.288, 0.343, 0.123, 9404.227, 125.406 and 140.775 mg/ml; IL-$1{\beta}$ production: 117.178, 0.135, 0.019, 237.451, 7.923 and 19.418 mg/ml; IL-6 production: 31.261, 0.105, 0.055, 128.434, 2.290 and 3.745 mg/ml. ED50 of piroxicam against LPS-induced cell viabilities, NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 were detected as 35.179, 6.552, 1.162, 7.273, 7.101 and $5.044{\mu}g/ml$, respectively at same conditions. Conclusions: All six single aqueous herbal extracts showed anti-bacterial effects against S. aureus, in the order of MeC, ArS, CrR, QuF and UlS aqueous extracts except for ToS; they did not showed any anti-bacterial effects (MIC>25 mg/ml). They also showed anti-inflammatory effects against LPS-activated Raw 264.7 cells in the order of ArS, MeC, UlS, ToS, QuF and CrR aqueous extracts. It means that the ArS and MeC will be showed favorable potent anti-bacterial and related anti-inflammatory effects.
Keywords
Quisqualis Fructus; Meliae Cortex; Arecae Semen; Crassirhizomae Rhizoma; Ulmi pasta Semen; Torreyae Semen; Staphylococcus Aureus;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim SH, et al. Hepatoprotective dibenzylbutyrolactone lignans of Torreya nucifera against CCl4-induced toxicity in primary cultured rat hepatocytes. Biol Pharm Bull. 2003; 26(8):1202-5.   DOI   ScienceOn
2 Saleem R, et al. Antibacterial effect of Melia azedarach flowers on rabbits. Phytother Res. 2002;16(8):762-4.   DOI   ScienceOn
3 Nathan SS, et al. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol. 2006;97(11):1316-23.   DOI   ScienceOn
4 Carpinella MC, Ferrayoli CG, Palacios SM. Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J Agric Food Chem. 2005;53(8):2922-7.   DOI   ScienceOn
5 Petrera E, Coto CE. Therapeutic effect of meliacine, an antiviral derived from Melia azedarach L., in mice genital herpetic infection. Phytother Res. 2009;23(12):1771-7.   DOI   ScienceOn
6 Eichem AC, et al. Microbial decomposition of elm and oak leaves in a karst aquifer. Appl Environ Microbiol. 1993; 59(11):3592-6.
7 Youn HJ, Noh JW. Screening of the anticoccidial effects of herb extracts against Eimeria tenella. Vet Parasitol. 2001;96(4):257-63.   DOI   ScienceOn
8 Youn HJ, et al. Anti-protozoal efficacy of medicinal herb extracts against Toxoplasma gondii and Neospora caninum. Vet Parasitol. 2003;116(1) :7-14.   DOI   ScienceOn
9 Benencia F, et al. Effect of Melia azedarach L. leaf extracts on human complement and polymorphonuclear leukocytes. J Ethnopharmacol. 1994; 41(1-2):53-7.   DOI   ScienceOn
10 Courreges MC, et al. In vitro antiphagocytic effect of Melia azedarach leaf extracts on mouse peritoneal exudate cells. J Ethnopharmacol. 1994;43(2):135-40.   DOI   ScienceOn
11 Wang CC, et al. Areca nut extract suppresses T-cell activation and interferon-gamma production via the induction of oxidative stress. Food Chem Toxicol. 2007;45(8):1410-8.   DOI   ScienceOn
12 Chang LY, et al. Areca nut extracts increased expression of inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1beta, interleukin-6 and interleukin-8, in peripheral blood mononuclear cells. J Periodontal Res. 2009;44(2):175-83.   DOI   ScienceOn
13 Wang CC, et al. Areca-nut extract modulates antigen-specific immunity and augments inflammation in ovalbuminsensitized mice. Immunopharmacol Immunotoxicol. 2011;33(2):315-22.   DOI   ScienceOn
14 Kaneria M, et al. Determination of antibacterial and antioxidant potential of some medicinal plants from saurashtra region, India. Indian J Pharm Sci. 2009;71(4):406-12.   DOI   ScienceOn
15 Rajeswary H, et al. Hepatoprotective action of ethanolic extracts of Melia azedarach Linn. and Piper longum Linn and their combination on CCl4 induced hepatotoxicity in rats. Indian J Exp Biol. 2011;49(4):276-81.
16 Kim HJ, et al. Nitric oxide and prostaglandin $E_2$ synthesis inhibitory activities of diarylheptanoids from the barks of Alnus japonica steudel. Arch Pharm Res. 2005;28(2):177-9.   DOI   ScienceOn
17 중앙과학기술통보사. 동의학가정백과. 서울:푸른산. 1990:398-400.
18 Lyon BR, Skurray R. Antimicrobial resistance of staphylococcus aureus: genetic basis. Microbiol Rev. 1987; 51(1):88-134.
19 Okamoto R, Okubo T, Inoue M. Detection of genes regulating betalactamase production in Enterococcus faecalis and Staphylococcus aureus. Antimicrob Agents Chemother. 1996; 40(11):2550-4.
20 Thomson-Carter FM, Carter PE, Pennington TH. Differentiation of staphylococcal species and strains by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1989;135(7) :2093-7.
21 Bachoual R, et al. Single or double mutational alterations of gyrA associated with fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Microb Drug Resist. 2001;7(3) :257-61.   DOI   ScienceOn
22 대한한방부인과학회. 한방여성의학(하). 서울:의성당. 2012:816-20.
23 권지명, 김동철. 加味芷貝散의 포도상구균 감염 유방염에 대한 항균활성 및 항염효과. 대한한방부인과학회지. 2013; 26(1):1-24.
24 장세란, 박영선, 김동철. 透膿散 및 瓜蔞牛蒡湯의 Staphylococcus aureus에 대한 in vitro 항균력 평가. 대한한방부인과학회지. 2012;25(3):27-39.
25 박은영, 김동철. 5종 단미제의 Staphylococcus aureus에 대한 in vitro 항균력 평가. 대한한방부인과학회지. 2013;26(1):25-40.   과학기술학회마을
26 Pfaller MA, et al. Multicenter evaluation of four methods of yeast inoculum preparation. J Clin Microbiol. 1988; 26(8):1437-41.
27 Tenover FC, et al. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol. 1998;36(4):1020-7.
28 정상설. 핵심유방학개론. 서울:고려의학. 1998:14-7.
29 Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era?. Arch Med Res. 2005;36(6):697-705.   DOI   ScienceOn
30 Foster TJ. The Staphylococcus aureus "superbug". J Clin Invest. 2004;114(12) :1693-6.   DOI
31 武之望. 濟陰綱目. 台北:旅風出版社. 1977:557.
32 Lee HB, Kim JC, Lee SM. Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res. 2009; 32(5):655-9.   DOI   ScienceOn
33 Lalithakumari H, Sirsi M. Antibacterial and antifungal activities of Areca catechu Linn. Indian J Exp Biol. 1965;3:66-7.
34 de Miranda CM, et al. The effect of areca nut on salivary and selected oral microorganisms. Int Dent J. 1996;46(4):350-6.
35 Kwon DY, et al. Antibacterial effect of Dryopteris crassirhizoma against methicillin-resistant Staphylococcus aureus. Fitoterapia. 2007;78(6):430-3.   DOI   ScienceOn
36 Lee BG, et al. Suppression of inducible nitric oxide synthase expression in Raw 264. 7 macrophages by two betacarboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 2000;406(3):301-9.   DOI   ScienceOn
37 Lee JH, et al. Meliae cortex extract exhibits anti-allergic activity through the inhibition of Syk kinase in mast cells. Toxicol Appl Pharmacol. 2007; 220(3):227-34.   DOI   ScienceOn
38 Bhandare AM, et al. Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. Food Chem Toxicol. 2010;48(12):3412-7.   DOI   ScienceOn
39 Huang PL, Chi CW, Liu TY. Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vitro and in vivo. Food Chem Toxicol. 2010;48(1):306-13.   DOI   ScienceOn
40 Ye G, et al. Ulmus macrocarpa hance for the treatment of ulcerative colitis-a report of 36 cases. J Tradit Chin Med. 1990;10(2):97-8.
41 Lee SM, et al. Antioxidant activity of two phloroglucinol derivatives from Dryopteris crassirhizoma. Biol Pharm Bull. 2003;26(9):1354-6.   DOI   ScienceOn
42 Singh A, Rao AR. Modulatory influence of areca nut on antioxidant 2(3)-tert-butyl-4-hydroxy anisole-induced hepatic detoxification system and antioxidant defence mechanism in mice. Cancer Lett. 1995;91(1):107-14.   DOI   ScienceOn
43 Wu PF, et al. A characterization of the antioxidant enzyme activity and reproductive toxicity in male rats following sub-chronic exposure to areca nut extracts. J Hazard Mater. 2010;178(1-3):541-6.   DOI   ScienceOn
44 Min BS, et al. Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chem Pharm Bull (Tokyo). 2001;49(5):546-50.   DOI   ScienceOn
45 Song SE, et al. Inhibitory effect of procyanidin oligomer from elm cortex on the matrix metalloproteinases and proteases of periodontopathogens. J Periodontal Res. 2003;38(3):282-9.   DOI   ScienceOn
46 Oh KS, et al. Antihypertensive, vasorelaxant, and antioxidant effect of root bark of Ulmus macrocarpa. Biol Pharm Bull. 2008;31(11):2090-6.   DOI   ScienceOn
47 Lee WS, et al. Antioxidant activities of abietane diterpenoids isolated from Torreya nucifera leaves. J Agric Food Chem. 2006;54(15):5369-74.   DOI   ScienceOn
48 Ryu YB, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem. 2010;18(22):7940-7.   DOI   ScienceOn
49 Shadomy S, Bruce JL, Kannan MM. Effect of inoculum size on in vitro susceptibility testing with lincomycin. Appl Microbiol. 1968;16(11):1663-8.
50 Chen Y, et al. CpG DNA induces cyclooxygenase-2 expression and prostaglandin production. Int Immunol. 2001;13(8):1013-20.   DOI   ScienceOn
51 Pfaller MA, et al. Standardized susceptibility testing of fluconazole: an international collaborative study. Antimicrob Agents Chemother. 1992; 36(9):1805-9.   DOI   ScienceOn
52 Pfaller MA, et al. Collaborative investigation of variables in susceptibility testing of yeasts. Antimicrob Agents Chemother. 1990;34(9):1648-54.   DOI   ScienceOn
53 Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol. 1999;39:191-220.   DOI   ScienceOn
54 Korhonen R, et al. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(4):471-9.   DOI   ScienceOn
55 Kim KW, et al. Polygonum cuspidatum, compared with baicalin and berberine, inhibits inducible nitric oxide synthase and cyclooxygenase-2 gene expressions in Raw 264.7 macrophages. Vascul Pharmacol. 2007;47(2-3):99-107.   DOI   ScienceOn
56 Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003;37(6) :355-61.   DOI   ScienceOn
57 Lee AK, et al. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNFalpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol. 2003; 139(1):11-20.   DOI   ScienceOn
58 Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004;203(2):127-37.   DOI   ScienceOn
59 Mathiak G, et al. Caspase-1-inhibitor ac-YVAD-cmk reduces LPS-lethality in rats without affecting haematology or cytokine responses. Br J Pharmacol. 2000;131(3):383-6.   DOI   ScienceOn
60 Fernandez-Martinez E, et al. Immunomodulatory effects of thalidomide analogs on LPSinduced plasma and hepatic cytokines in the rat. Biochem Pharmacol. 2004; 68(7):1321-9.   DOI   ScienceOn
61 Lowry FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8) :520-32.   DOI   ScienceOn