Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.3.240

Improvement of the Mechanical Property and Corrosion Resistivity of the Ni-/Fe-based Hybrid Coating Layer using High-velocity Oxygen Fuel Spraying by Heat Treatment  

Kim, Jungjoon (School of Materials Science and Engineering, Kookmin University)
Lee, Yeonjoo (School of Materials Science and Engineering, Kookmin University)
Kim, Song-Yi (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
Lee, Jong-Jae (Division of Technical Research, Hankook Coating)
Kim, Jae-hun (School of Materials Science and Engineering, Kookmin University)
Lee, Seok-Jae (Division of Advanced Materials Engineering, Jeonbuk National University)
Lim, Hyunkyu (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
Lee, Min-Ha (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
Kim, Hwi-Jun (Smart liquid processing R&D Department, Korea Institute of Industrial Technology)
Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
Publication Information
Journal of Powder Materials / v.29, no.3, 2022 , pp. 240-246 More about this Journal
Abstract
Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.
Keywords
HVOF coating; Heat treatment; Corrosion resistance; Hardness; Powder;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J.-C. Chen, H. Si, W.-S. Zhan, B.-G. Shen and J.-G. Zhao: Acta Phys. Sin., 34 (1985) 1516.   DOI
2 M. I. Abdulsalam: Corrosion Sci., 47 (2005) 1336.   DOI
3 M. Vankeerberghen, M. Abdulsalam, H. Pickering and J. Deconinck: J. Electrochem. Soc., 150 (2003) B445.   DOI
4 D. Han, K. Gizem, S. Choi, S. Cho and Y. Ko: Trans. Mater. Process., 30 (2021) 301.   DOI
5 B.-Y. Choi, J. Liang and W. Gao: Met. Mater. Int., 11 (2005) 499.   DOI
6 J. K i m, S.-Y. K i m, J .-J. L ee, S.-J. Lee, H . Li m, M.-H. Lee, H.-J. Kim and H. Choi: J. Powder Mater., 28 (2021) 483.   DOI
7 T. Hussain, T. Dudziak, N. Simms and J. Nicholls: J. Therm. Spray Technol., 22 (2013) 797.   DOI
8 S. Paul and M. Harvey: J. Therm. Spray Technol., 22 (2013) 316.   DOI
9 A. Syed, N. Simms and J. Oakey: Fuel, 101 (2012) 62.   DOI
10 Y. Kawahara: J. Therm. Spray Technol., 16 (2007) 202.   DOI
11 S.-Y. Chen, G.-Z. Ma, H.-D. Wang, P.-F. He, H.-M. Wang and M. Liu: Surf. Coat. Technol., 344 (2018) 43.   DOI
12 K. Yamada, Y. Tomono, J. Morimoto, Y. Sasaki and A. Ohmori: Vacuum, 65 (2002) 533.   DOI
13 N. Folkeson, J. Pettersson, C. Pettersson, L.G. Johansson, E. Skog, B.-A. Andersson, S. Enestam, J. Tuiremo, A. Jonasson and B. Heikne: Materials Science Forum, Trans Tech Publ, (2008) 289.
14 N. Singh, S. Singh, M. Kumar, M. Kaur, H. Singh and S. Sarkar: IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2019) 012021.
15 R. Karmakar, P. Maji and S. K. Ghosh: Met. Mater. Int., 27 (2021) 2134.   DOI
16 J. Y. Park, S. J. Yang, Y. G. Jin, C. R. Park, G. H. Kim and H. N. Han: Met. Mater. Int., 20 (2014) 1037.   DOI
17 M. Oksa, E. Turunen, T. Suhonen, T. Varis and S.-P. Hannula: Coatings, 1 (2011) 17.   DOI
18 J. Jeon, N. Seo, J. J. Lee, S. B. Son and S.-J. Lee: J. Powder Mater., 28 (2021) 478.   DOI
19 T. Sidhu, S. Prakash and R. Agrawal: Mater. Sci., 41 (2005) 805.   DOI
20 T. Sundararajan, S. Kuroda, T. Itagaki and F. Abe: ISIJ Int., 43 (2003) 104.   DOI
21 J. Hruska, J. Mlnarik and J. Cizner: Coatings, 12 (2022) 116.   DOI
22 S. Kumar, A. Handa, V. Chawla, N. K. Grover and R. Kumar: Surf. Eng., 37 (2021) 833.   DOI
23 M. Oksa, P. Auerkari, J. Salonen and T. Varis: Fuel Process. Technol., 125 (2014) 236.   DOI
24 J. Guilemany, J. Miguel, S. Vizcaino, C. Lorenzana, J. Delgado and J. Sanchez: Surf. Coat. Technol., 157 (2002) 207.   DOI
25 G. Prashar, H. Vasudev and L. Thakur: Surf. Topogr.: Metrol. Prop., 9 (2021) 043002.   DOI
26 F. Ghadami and A. S. R. Aghdam: Thin Solid Films, 678 (2019) 42.   DOI
27 C. Li, H. Wang, J. Ding, S. Wang, J. Li and S. Kou: Surf. Eng., 37 (2021) 590.   DOI
28 S.-J. Oh and J.-B. Lee: J. Surf. Sci. Eng., 40 (2007) 82.
29 L. Jacobo, R. Garcia-Hernandez, V. Lopez-Morelos and A. Contreras: Met. Mater. Int., 27 (2021) 3750.   DOI
30 V. P. S. Sidhu, K. Goyal and R. Goyal: Anti-Corros. Methods Mater., 64 (2017) 499.   DOI
31 S. Karlsson, L.-E. Amand and J. Liske: Fuel, 139 (2015) 482.   DOI
32 N. Abu-warda, L. Tomas, A. Lopez and M. Utrilla: Surf. Coat. Technol., 418 (2021) 127277.   DOI
33 M. Oksa and J. Metsajoki: J. Therm. Spray Technol., 24 (2015) 436.   DOI
34 S.-H. Lee, N. J. Themelis and M. J. Castaldi: J. Therm. Spray Technol., 16 (2007) 104.   DOI
35 C. Lyphout, P. Nylen and L. G. Ostergren: J. Therm. Spray Technol., 21 (2012) 86.   DOI