Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.2.118

Fabrication of Porous Tungsten by Freeze Casting and Vacuum Drying of WO3/Tert-butyl Alcohol Slurry  

Heo, Youn Ji (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Eui Seon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University)
Publication Information
Journal of Powder Materials / v.29, no.2, 2022 , pp. 118-122 More about this Journal
Abstract
The synthesis of porous W by freeze-casting and vacuum drying is investigated. Ball-milled WO3 powders and tert-butyl alcohol were used as the starting materials. The tert-butyl alcohol slurry is frozen at -25℃ and dried under vacuum at -25 and -10℃. The dried bodies are hydrogen-reduced at 800℃ and sintered at 1000℃. The XRD analysis shows that WO3 is completely reduced to W without any reaction phases. SEM observations reveal that the struts and pores aligned in the tert-butyl alcohol growth direction, and the change in the powder content and drying temperature affects the pore structure. Furthermore, the struts of the porous body fabricated under vacuum are thinner than those fabricated under atmospheric pressure. This behavior is explained by the growth mechanism of tert-butyl alcohol and rearrangement of the powders during solidification. These results suggest that the pore structure of a porous body can be controlled by the powder content, drying temperature, and pressure.
Keywords
Porous W; Tert-butyl alcohol; Freeze Casting; Vacuum drying; Pore structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
2 T. Sueki, T. Takaishi, M. Ikeda and N. Arai: Fluid Dyn. Res., 42 (2021) 15004.
3 W. L. Li, K. Lu and J. Y. Walz: Int. Mater. Rev., 57 (2012) 37.   DOI
4 S.-Y. Yook, H.-D. Jung, C.-H. Park, K.-H. Shin, Y.-H. Koh, Y. Estrin and H.-E. Kim: Acta Biomater., 8 (2012) 2401.   DOI
5 E. S. Lee, Y. J. Heo, Y. T. Ko, J. G. Park, Y.-H. Choa, and S.-T. Oh: J. Powder Mater., 28 (2021) 216.
6 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI
7 K. C. Jeon, Y. D. Kim, M.-J. Suk and S.-T. Oh: J. Powder Mater., 22 (2015) 129.
8 T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Koto: J. Mater. Sci., 36 (2001) 2523.   DOI
9 S. Deville: Adv. Eng. Mater., 10 (2008) 155.   DOI
10 T. Ohji and M. Fukushima: Int. Mater. Rev., 57 (2012) 115.   DOI
11 A. D. Rovers, S. Wang, X. Li and H. Zhang: J. Mater. Chem. A., 2 (2014) 17787.   DOI
12 Y. Tang, S. Qiu, C. Wu, Q. Miao and K. Zhao: J. Eur. Ceram. Soc., 36 (2016) 1513.   DOI
13 W. Y. Kim, H. B. Ji, T. Y. Yang, S. Y. Yoon and H. C. Park: J. Korean Ceram. Soc., 47 (2010) 151.   DOI
14 E. S. Lee, Y. J. Heo, M.-J. Suk and S.-T. Oh: J. Powder Mater., 28 (2021) 331.
15 T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Wood-house: Metall. Trans. B, 7 (1976) 589.   DOI
16 D. R. Uhlmann, B. Chalmers and K. A. Jackson: J. Appl. Phys., 35 (1964) 2986.   DOI