Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.2.110

Grain Shape and Grain Growth Behavior in the (K0.5Na0.5)NbO3-CaZrO3 System  

Lee, Chul-Lee (School of Materials Science and Engineering, Gyeongsang National University)
Moon, Kyoung-Seok (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.29, no.2, 2022 , pp. 110-117 More about this Journal
Abstract
The grain growth behavior in the (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) system is studied as a function of the amount of CZ and grain shape. The (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) powders are synthesized using a conventional solid-state reaction method. A single orthorhombic phase is observed at x = 0 - 0.03. However, rhombohedral and orthorhombic phases are observed at x = 0.05. The grain growth behavior changes from abnormal grain growth to the suppression of grain growth as the amount of CaZrO3 (CZ) increases. With increasing CZ content, grains become more faceted, and the step-free energy increases. Therefore, the critical growth driving force increases. The grain size distribution broadens with increasing sintering time in KNNCZ-0.05. As a result, some large grains with a driving force larger than the critical driving force for growth exhibit abnormal grain growth behavior during sintering. Therefore, CZ changes the grain growth behavior and microstructure of KNN. Grain growth at the faceted interface of the KNNCZ system occurs via two-dimensional nucleation and growth.
Keywords
Potassium sodium niobate; Microstructure; Abnormal grain growth; Grain shape;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Hoshina: J. Ceram. Soc. Jpn., 121 (2013) 156.   DOI
2 Y.-I. Jung, S.-J. L. Kang and D. Y. Yoon: J. Mater. Res., 24 (2009) 2949.   DOI
3 M. Hillert: Acta Metall., 13 (1965) 227.   DOI
4 M. Marz, A. Schletz, B. Eckardt, S. Egelkraut and H. Rauh: 6th Int. Conf. Integr. Power Electron. Syst., (2010) 1.
5 H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu and B. Xu: Int. J. Appl. Ceram. Technol., 12 (2015) E17.   DOI
6 Z. Liu, H. Fan, S. Lei, X. Ren and C. Long: J. Eur. Ceram. Soc., 37 (2017) 115.   DOI
7 G. Shirane, R. Newnham and R. Pepinsky: Phys. Rev. Lett., 96 (1954) 581.
8 C.-W. Ahn, C.-S. Park, R. Dittmer, S.-H. Hong and S. Priya: J. Mater. Sci., 45 (2010) 396.
9 R. Wang, H. Bando and M. Itoh: Appl. Phys. Lett., 95 (2009) 092905.   DOI
10 J. Wu, D. Xiao and J. Zhu: Chem. Rev., 115 (2015) 2559.   DOI
11 W. Liang, W. Wu, D. Xiao and J. Zhu: J. Am. Ceram. Soc., 94 (2011) 4317.   DOI
12 R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson and M. Christopher: IEEE Trans. Electron. Packag. Manuf., 27 (2004) 164.   DOI
13 Z. Liu, A. Zhang, J. Lu, B. Xie, B. Liang, Y. Mao and H. Fan: J. Alloys Compd., 817 (2020) 152798.   DOI
14 G. Haertling: J. Am. Ceram. Soc., 5 (1967) 329.   DOI
15 R. Wang, H. Bando, M. Kidate, Y. Nishihara and M. Itoh: Jpn. J. Appl. Phys., 50 (2011) 09ND10.   DOI
16 E. A. Wood: Acta Crystallogr., 4 (1951) 353.   DOI
17 T. Hoshina, S. Hatta, H. Takeda and T. Tsurumi: Jpn. J. Appl. Phys., 5 (2018) 0902BB.
18 S.-J. L. Kang: Elsevier Butterworth-Heinemann, Oxford, UK, (2005).
19 P. Kabakov, C. Dean, V. Kurusingal, Z. Cheng, H.-Y. Lee and S. Zhang: J. Mater. Chem. C., 8 (2020) 7606.   DOI
20 K.-S. Moon: J. Powder Mater., 2 (2018) 104.
21 H.D. Megaw and G. Solids.: Trans. Faraday Soc., 42 (1946) A224.   DOI
22 R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi and M. Itoh: Phys. Status Solidi Rapid Res. Lett., 3 (2009) 142.   DOI
23 G. Yao, X. Wang, T. Sun and L. Li: J. Am. Ceram. Soc., 94 (2011) 3856.   DOI
24 V. Buscaglia and C.A. Randall: J. Eur. Ceram. Soc., 40 (2020) 3744.   DOI