Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.2.97

Property of the Spheroidized Zr Powder by Radio Frequency Plasma Treatment  

Lee, Yukyeong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Choi, Mi-Sun (Industrial Materials Research Group, Research Institute of Industrial Science and Technology)
Park, Eon Byeong (Industrial Materials Research Group, Research Institute of Industrial Science and Technology)
Oh, Jeong Seok (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Nam, Taehyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Jung Gi (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.28, no.2, 2021 , pp. 97-102 More about this Journal
Abstract
Powder quality, including high flowability and spherical shape, determines the properties of additively manufactured products. Therefore, the cheap production of high-quality powders is critical in additive manufacturing. Radio frequency plasma treatment is an effective method to fabricate spherical powders by melting the surface of irregularly shaped powders; in the present work, mechanically milled Zr powders are spheroidized by radio frequency plasma treatment and their properties are compared with those of commercial Zircaloy-2 alloy powder. Spherical Zr particles are successfully fabricated by plasma treatment, although their flowability and impurity contents are poorer than those of the commercial Zircaloy-2 alloy powder. This result shows that radio-frequency plasma treatment with mechanically milled powders requires further research and development for manufacturing low-cost powders for additive manufacturing.
Keywords
Plasma treatment; Spherization; Zirconium; Additive manufacturing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. A. Balbaa, A. Ghasemi, E. Fereiduni, M. A. Elbestawi, S. D. Jadhav and J.-P. Kruth: Addit. Manuf., 37 (2021) 101630.
2 Q. Qin, F. Yang, T. Shi, Z. Guo, H. Sun, P. Li, X. Liu, C. Chen, J. Hao and P. Cao: Adv. Powder Technol., 30 (2019) 1709.   DOI
3 H. Liu, L. Lian and Y. Liu: Mater. Manuf. Process., 34 (2019) 630.   DOI
4 P. Sun, Z. Z. Pang, Y. Xia, Y. Zhang and C. S. Zhou: Powder Technol., 301 (2016) 331.   DOI
5 B. Lee, D.-K. Kim, Y. I. Kim, D. H. Kim, Y. Son, K.-T. Park and T.-S. Kim: J. Korean Powder Metall. Inst., 27 (2020) 509.   DOI
6 B. Liu, G. He, Y. Liu, M. Yue and L. Lian: Mater. Lett., 288 (2021) 129360.   DOI
7 J. Van Humbeeck: Shap. Mem. Superelastcity, 4 (2018) 309.   DOI
8 K.-B. Kim, D.-Y. Yang, Y.-J. Kim, J. Choe, J.-N. Kwak and W.-H. Jung: J. Korean Powder Metall. Inst., 27 (2020) 388.   DOI
9 T.-I. Hsu, C.-M . Wei, L.-D. Wu, Y.-P. Li, A. Chiba and M.-H. Tsai: Sci. Rep., 8 (2018) 13776.   DOI
10 M . Wei, S. Chen, J. Liang and C. Liu: Vacuum, 143 (2017) 185-194.   DOI
11 M. Zheng, S. Zhang, Q. Hu, J. Xu, W. Mao, L. Lu, H. He, Y. Liu and W. Zhao: Powder Metall., 62 (2019) 15.   DOI
12 X. Zi, C. Chen, X. Wang, P. Wang, X. Zhang and K. Zhou: Mater. Sci. Technol., 34 (2018) 735.   DOI
13 A. J. Parkison and S. M. McDeavitt: Metall. Mater. Trans. A, 42 (2011) 192.   DOI
14 S. Yang, J.-N. Kwak, J.-Y. Yun, J.-Y. Kim, S. Park, H.-S. Kim, Y.-J. Kim and Y.-H. Park: J. Korean Powder Metall. Inst., 20 (2013) 467.   DOI
15 D.-S. Shim, G.-Y. Baek, J.-S. Seo, G.-Y. Shin, K.-P. Kim and K.-Y. Lee: Opt. Laser Technol., 86 (2016) 69.   DOI
16 M. Naito, O. Hayakawa, K. Nakahira, H. Mori and J. Tsubaki: Powder Technol., 100 (1998) 52.   DOI