Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.4.325

The Effects of Kaolin Addition on the Properties of Reticulated Porous Diatomite-kaolin Composites  

Lee, Chae-Young (Powder and Ceramics Division, Korea Institute of Materials Science)
Lee, Sujin (Powder and Ceramics Division, Korea Institute of Materials Science)
Ha, Jang-Hoon (Powder and Ceramics Division, Korea Institute of Materials Science)
Lee, Jongman (Powder and Ceramics Division, Korea Institute of Materials Science)
Song, In-Hyuck (Powder and Ceramics Division, Korea Institute of Materials Science)
Moon, Kyoung-Seok (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.27, no.4, 2020 , pp. 325-332 More about this Journal
Abstract
In this study, the effects of kaolin addition on the properties of reticulated porous diatomite-kaolin composites are investigated. A reticulated porous diatomite-kaolin composite is prepared using the replica template method. The microstructure and pore characteristics of the reticulated porous diatomite-kaolin composites are analyzed by controlling the PPI value (45, 60, and 80 PPI) of the polyurethane foam (which are used as the polymer template), the ball-milling time (8 and 24 h), and the amount of kaolin (0-50 wt. %). The average pore size decreases as the amount of kaolin increases in the reticulated porous diatomite-kaolin composite. As the amount of kaolin increases, it can be determined that the amount of inter-connected pore channels is reduced because the plate-shaped kaolin particles connect the gaps between irregular diatomite particles. Consequently, a higher kaolin percentage affects the overall mechanical properties by improving the pore channel connectivity. The effect of kaolin addition on the basic properties of the reticulated porous diatomite-kaolin composite is further discussed with characterization data such as pore size distribution, scanning electron microscopy images, and compressive strength.
Keywords
Reticulated porous diatomite-kaolin composite; Pore size distribution; Compressive strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. R. Studart, U. T. Gonzenbach, E. Tervoort and L. J. Gauckler: J. Am. Ceram. Soc., 89 (2006) 1771.   DOI
2 S. Ahmad, M. A. Latif, H. Taib and A. F. Ismail: Adv. Mat. Res., 795 (2013) 5.   DOI
3 P. Sepulveda: Am. Ceram. Soc. Bull., 76 (1997) 61.
4 I. Fukuura and T. Asano: Fabrication and Properties of Some Oxide Ceramics: Alumina, Mullite and Zironia, in Fine Ceramics, S. Saito (Ed.), Elsevier, New York (1998) 165.
5 C. Xiao, L. Chen, Y. Tang, X. Zhang, K. Zheng and X. Tian: Composites, Part A, 124 (2019) 105511.   DOI
6 J.-H. Ha, S. Zaighum, A. Bukhari, J. Leem I.-H. Song and C. Park: Ceram. Int., 42 (2016) 13796.   DOI
7 DL. Shimanovich, AI. Vorobjova, DI. Tishkevich, AV. Trukhanov, MV. Zdorovets and AL. Kozlovskiy: Beilstein J. Nanotechnol., 9 (2018) 1423.   DOI
8 W.-L. Huo, X.-Y. Zhang, Y.-G. Chen, Y.-J. Lu, W.-T. Liu, X.-Q. Xi, Y.-L. Wang J. Xu and J.-L. Yang: J. Am. Ceram. Soc., 99 (2016) 3512.   DOI
9 B. A. da Silva, V. de Souza Godim de Oliveira, M. D. Luccio, D. Hotza, K. Rezwan and M. Wilhelm: Ceram. Int., 46 (2020) 16096.   DOI
10 R. Bade, N. Miyazaki and T. Hoshide: Fatigue Fract. Eng. Mater. Struct., 42 (2019) 1775.   DOI
11 X. Zhang, X. Liu and G. Meng: J. Am. Ceram, Soc., 88 (2005) 1826.   DOI
12 H.-T. Wang, X.-Q. Liu, F.-L. Chen, G. Y. Meng and O. T. Sorensen: J. Am. Ceram, Soc., 81 (1998) 781.   DOI
13 Choi, Y.S. and Chung, I.J: Korean Chem. Eng. Res., 46(1) (2008) 23.
14 J.-H. Ha, E. Oh, B. Bae and I.-H. Song: Ceram. Int., 39 (2013) 8955.   DOI