Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.1.6

Fabrication of Porous Ni by Freeze Drying and Hydrogen Reduction of NiO/Camphene Slurry  

Jeong, Jae-Hun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hyun, Chang-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.26, no.1, 2019 , pp. 6-10 More about this Journal
Abstract
In this study, freeze drying of a porous Ni with unidirectionally aligned pore channels is accomplished by using a NiO powder and camphene. Camphene slurries with NiO content of 5 and 10 vol% are prepared by mixing them with a small amount of dispersant at $50^{\circ}C$. Freezing of a slurry is performed at $-25^{\circ}C$ while the growth direction of the camphene is unidirectionally controlled. Pores are generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies are hydrogen-reduced at $400^{\circ}C$ and then sintered at $800^{\circ}C$ and $900^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that the NiO powder is completely converted to the Ni phase without any reaction phases. The sintered samples show large pores that align parallel pores in the camphene growth direction as well as small pores in the internal walls of large pores. The size of large and small pores decreases with increasing powder content from 5 to 10 vol%. The influence of powder content on the pore structure is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.
Keywords
Porous Ni; Camphene/NiO; Freeze drying; Hydrogen reduction; Pore structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059.   DOI
2 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
3 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
4 S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) s688.   DOI
5 J.-H. Kim, S.-T. Oh and C.-Y. Hyun: J. Korean Powder Metall. Inst., 23 (2016) 49 (Korean).   DOI
6 S.-T. Oh, Y. D. Kim and M.-J. Suk: Mater. Lett., 139 (2015) 268.   DOI
7 S.-K. Ryi, J.-S. Park, S.-J. Park, D.-G. Lee and S.-H. Kim: J. Membr. Sci., 299 (2007) 174.   DOI
8 S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins: J. Catal., 37 (1975) 424.   DOI
9 M. Wisniewska: Powder Technol., 198 (2010) 258.   DOI
10 N.-H. Kim, H. Song, S.-C. Choi and Y.-H. Choa: J. Korean Powder Metall. Inst., 16 (2009) 262 (Korean).   DOI
11 Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando and T. Ohji: J. Am. Ceram. Soc., 85 (2002) 1961.   DOI
12 B. Jankovic, B. Adnadevic and S. Mentus: Chem. Eng. Sci., 63 (2008) 567.   DOI
13 D. R. Uhlmann, B. Chalmers and K. A. Jackson: J. Appl. Phys., 35 (1964) 2986.   DOI
14 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI
15 K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.   DOI