Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.6.487

Effects of the Mixing Method and Sintering Temperature on the Characteristics of PZNN-PZT Piezoelectric Ceramic Materials  

Kim, So Won (Department of Advanced Materials Engineering, Korea Polytechnic University)
Jeong, Yong Jeong (Department of Advanced Materials Engineering, Korea Polytechnic University)
Lee, Hee Chul (Department of Advanced Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of Powder Materials / v.25, no.6, 2018 , pp. 487-493 More about this Journal
Abstract
The impact of different mixing methods and sintering temperatures on the microstructure and piezoelectric properties of PZNN-PZT ceramics is investigated. To improve the sinterability and piezoelectric properties of these ceramics, the composition of $0.13Pb((Zn_{0.8}Ni_{0.2})_{1/3}Nb_{2/3})O_3-0.87Pb(Zr_{0.5}Ti_{0.5})O_3$ (PZNN-PZT) containing a Pb-based relaxor component is selected. Two methods are used to create the powder for the PZNN-PZT ceramics. The first involves blending all source powders at once, followed by calcination. The second involves the preferential creation of columbite as a precursor, by reacting NiO with $Nb_2O_5$ powder. Subsequently, PZNN-PZT powder can be prepared by mixing the columbite powder, PbO, and other components, followed by an additional calcination step. All the PZNN-PZT powder samples in this study show a nearly-pure perovskite phase. High-density PZNN-PZT ceramics can be fabricated using powders prepared by a two-step calcination process, with the addition of 0.3 wt% MnO2 at even relatively low sintering temperatures from $800^{\circ}C$ to $1000^{\circ}C$. The grain size of the ceramics at sintering temperatures above $900^{\circ}C$ is increased to approximately $3{\mu}m$. The optimized PZNN-PZT piezoelectric ceramics show a piezoelectric constant ($d_{33}$) of 360 pC/N, an electromechanical coupling factor ($k_p$) of 0.61, and a quality factor ($Q_m$) of 275.
Keywords
Piezoelectric ceramics; columbite precursor; low-temperature sintering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. P. Zheng, Y. D. Hou, H. Y. Ge, M. K. Zhu and H. Yan: J. Eur. Ceram. Soc., 33 (2013) 1447.   DOI
2 X. Zeng, X. He, W. Cheng, X. Zheng and P. Qiu: J. Alloys Compd., 485 (2009) 843.   DOI
3 H. L. Li, Y. Zhang, J. J. Zhou, X. W. Zhang, H. Liu and J. Z. Fang: Ceram. Int., 41 (2015) 4822.   DOI
4 L. D. Vuong, P. D. Gio, T. V. Chuong, D. T. H. Trang, D. V. Hung and N. T. Duong: Int. J. Mat. Chem., 3 (2013) 39.
5 S. B. Seo, S. H. Lee, C. B. Yoon, G. T. Park and H. E. Kim: J. Am. Ceram. Soc., 87 (2004) 1238.   DOI
6 S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim and K. W. Lee: J. Electroceram., 18 (2007) 311.   DOI
7 N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan and D. P. Cann: Curr. Appl. Phys., 6 (2006) 303.   DOI
8 E. S. Na and S. C. Choi: J. Kor. Ceram. Soc., 36 (1999) 1235.
9 S. H. Lee, C. B. Yoon, S. M. Lee and H. E. Kim: J. Eur. Ceram. Soc., 26 (2006) 111.   DOI
10 L. Srisombat, O. Khamman, R. Yimnirun, S. Ananta and T. R. Lee: Chiang Mai J. Sci., 36 (2009) 69.
11 J. H. Yoo, Y. J. Kim, H. Y. Cho and Y. H. Jeong: Sens. Actuators, A, 255 (2017) 160.   DOI
12 M. C. Chure, P. C. Chen, L. Wu, B. H. Chen and K. K. Wu: Adv. Mat. Res., 284 (2011) 1375.
13 R. Bjork, V. Tidare, H. L. Frandsen and N. Pryds: J. Am. Ceram. Soc., 96 (2013) 103.   DOI
14 H. Fan and H. E. Kim: J. Appl. Phys., 91 (2002) 317.   DOI
15 Y. S. Kim, J. D. Han, J. H. Yoo and Y. H. Jeong: J. Korean Inst. Electr. Electron. Mater. Eng., 29 (2016) 608.
16 G. Peng, C. Chen, J. Zhang, D. Zheng, S. Hu and H. Zhang: J. Mater. Sci: Mater. Electron., 27 (2016) 3145.   DOI
17 E. M. Alkoy, M. Y. Kaya, D. Avdan and S. Alkoy: IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 63 (2016) 907.   DOI
18 N. D. T. Luan, L. D. Vuong and B. C. Chanh: Int. J. Mat. Chem., 3 (2013) 51.
19 C. W. Ahn, H. C. Song, S. H. Park, S. Nahm, K. Uchino, S. Priya, H. G. Lee and N. K. Kang: Jpn. J. Appl. Phys., 44 (2005) 1314.   DOI