Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.3.226

Study on preparation and photocatalytic properties of F-containing TiO2 nanopowders using wet-process from Ammonium Hexafluorotitanate  

Lee, Duk-Hee (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Park, Jae-Ryang (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Kim, Hyeon-Mo (Monolith Co. Ltd.)
Park, Kyung-Soo (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Publication Information
Journal of Powder Materials / v.25, no.3, 2018 , pp. 226-231 More about this Journal
Abstract
F-containing $TiO_2$ nanopowders are synthesized using simple wet processes (precipitation-based and hydrothermal) from ammonium hexafluorotitanate (AHFT, $(NH_4)_2TiF_6$) as a precursor to apply as a photocatalyst for the degradation of rhodamine B (RhB). The surface properties of the prepared samples are evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results confirm that the synthesized anatase $TiO_2$ has sphere-like shapes, with numerous small nanoparticles containing fluorine on the surface. The photocatalytic activity of F-containing $TiO_2$ compared with F-free $TiO_2$ is characterized by measuring the degradation of RhB using a xenon lamp. The photocatalytic degradation of F-containing $TiO_2$ exhibits improved photocatalytic activity, based on the positive effects of adsorbed F ions on the surface.
Keywords
$TiO_2$; AHFT; Anatase; Precipitation; Hydrothermal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Nowotny, C. C. Sorrel, L. R. Sheppared and T. Bak: Int. J. Hydrogen Energy, 30 (2005) 521.   DOI
2 J. B. Joo, M. Dahl, N. Li, F. Zaera and Y. Yin: Energy Environ. Sci., 6 (2013) 2082.   DOI
3 J. B. Joo, Q. Zhang, M. Dahl, F. Zaera and Y. Yin: J. Mater. Res., 28 (2013) 362.   DOI
4 A. Fujishma and K. Honda: Nature, 37 (1972) 238.
5 J. H. Pan, Z. Cai, Y. Yu and X. S. Zhao: J. Mater. Chem., 21 (2011) 11430.   DOI
6 L. Zhang, S. Li, B. Liu, D. Wang and T. Xie: ACS Catal., 10 (2014) 3724.
7 X. Jia, Y. Liu, X. Wu and Z. Zhang: Appl. Sulf. Sci., 311 (2014) 609.   DOI
8 H. Zhang, G. Chen and D. W. Bahnemann: J. Mater. Chem., 19 (2009) 5089.   DOI
9 R. Daghrir, P. Drogui and D. Robert: Ind. Eng. Chem. Res., 52 (2013) 3581.   DOI
10 Q. Li and J.K. Shang: Environ. Sci. Technol., 43 (2009) 8923.   DOI
11 Y. Yu, J. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge and P. K. Wong: Appl. Catal. A, 289 (2005) 186.   DOI
12 M. Xing, Y. Wu, J. Zhang, F. Chen: Nanoscale, 2 (2010) 1233.   DOI
13 M. Bizarro, A.S. Arzate, I.G. Wilches, J.C. Alonso and A. Ortiz: Catalysis Today, 166 (2011) 129.   DOI
14 Y. Zhu, F. Piscitelli, G. G. Buonocore, M. Lavorgna, E. Amendola, L. Ambrosio: ACS Appl. Mater. Interfaces, 4 (2012) 150.   DOI
15 R. Nakamura, T. Tanaka and Y. Nakato: J. Phys. Chem. B, 108 (2004) 10617.
16 M. E. Pulido, D. O. Gonzalez, R. J. M. Dona, G. Colon, J. A. Navio and P. J. Perz: Appl. Catal. A , 411-412 (2012) 153.   DOI
17 H. E. Wang, Z. Chen, Y. H. Leung, C. Luan, and C. Liu: Appl. Phys. Lett., 96,(2010) 263104.   DOI
18 L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M. M. Titirici: Adv. Mater., 22 (2010) 3317.   DOI
19 T. L. R. Hewer, E. C. C. Souza, T. S. Martins, E. N. S. Muccillo and R. S. Freire: J. Mol. Catal. A Chem., 336 (2011) 58.   DOI
20 J. Tang, H. Quan and J. Ye: Chem. Mater., 19 (2007) 116.   DOI
21 H. Park and W. Choi: J. Phys. Chem. B, 108 (2004) 4086.   DOI
22 J. C. Yu, J. Yu, W. Ho, Z. Jiang and L. Zhang: Chem. Mater., 14 (2002) 3808.   DOI