Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.5.353

Study on thermal behavior of Ammonium Hexafluofide Titanate for Synthesis of TiO2 Powders  

Lee, Duk-Hee (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Park, Jae-Ryang (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Park, Kyung-Soo (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Kim, Hyeon-Mo (Monolith Co. Ltd.)
Publication Information
Journal of Powder Materials / v.23, no.5, 2016 , pp. 353-357 More about this Journal
Abstract
In this study, $TiO_2$ powders are synthesized from ammonium hexafluoride titanate (AHFT, $(NH_4)_2TiF_6$) as a precursor by heat treatment. First, we evaluate the physical properties of AHFT using X-ray diffraction (XRD), particle size analysis (PSA), thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Then, to prepare the $TiO_2$ powders, is heat-treated at $300-1300^{\circ}C$ for 1 h. The ratio of anatase to rutile phase in $TiO_2$ is estimated by XRD. The anatase phase forms at $500^{\circ}C$ and phase transformation to the rutile phase occurs at $1200^{\circ}C$. Increase in the particle size is observed upon increasing the reaction temperature, and the phase ratio of the rutile phase is determined from a comparison with the calculated XRD data. Thus, we show that anatase and rutile $TiO_2$ powders could be synthesized using AHFT as a raw material, and the obtained data are utilized for developing a new process for producing high-quality $TiO_2$ powder.
Keywords
$TiO_2$; AHFT; phase transformation; rutile; anatase;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Chang, J. Ma, Z. Zhao and L. Qi: Chem. Mater., 7 (1995) 663.   DOI
2 B. S. Lee, D. Y. Shin and S. M. Han: J. Korean Ceram. Soc., 37 (2000) 308.
3 J. Yang, S. Mei and J. M. Ferreira: J. American Ceramic Soc., 83 (2000) 1361.   DOI
4 J. G. Kim and I. C. Kang: J. Korean Powder Metall. Inst., 19 (2012) 196.   DOI
5 H. S. Park, S. Y. Joo, J. P. Choi and W. B. Kim: J. Korean Powder Metall. Inst., 22 (2015) 396.   DOI
6 L. Gao and Q. Zhang: Materials Transactions, 42 (2001) 1676.   DOI
7 S. O. Choi, J. H. Cho, W. Y. Kim and S. W. Lim: Korean J. Met. Mater., 50 (2012) 523.   DOI
8 J. H. Braun, A. Baidins and R. E. Marganski: Prog. Org. Coat., 20 (1992) 105.   DOI
9 A. S. Attar, M. S. Chamsari, F. Hajesmaeilbaigi and S. Mirdamadi: J. Mater. Sci., 43 (2008) 1723.   DOI
10 H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida: J. Mater. Chem., 11 (2001) 1694.   DOI
11 T. Sugimoto, X. Zhou and A. Muramastu: J. Colloid Interface Sci., 259 (2003) 53.   DOI
12 N. Venkatachalam, M. Palanichamy and V. Murugesan: Mater. Chem. Phys., 104 (2007) 454.   DOI
13 A. Y. Zhang, L. L. Long, C. Liu, W. W. Li and H. Q. Yu: Green Chem., 16 (2014) 2745.   DOI
14 H. J. Noh, J. K. Lee, D. S. Seo and K. H. Hwang: J. Kor. Ceram. Soc., 39 (2002)
15 H. Nishzawa, N. Yamasaki and K. Matsuoka: J. Am. Ceram. Soc., 65 (1982) 343.   DOI
16 S. D. Mo and W. Y. Ching: Phys. Rev. B, 51 (1995) 13023.   DOI
17 O. Carp, C. L. Huisman and A. Reller: Prog. Solid State Chem., 21 (2004) 33.
18 J. Kim, K. C. Song, S. Foncillas and S. Pratsinis: J. Eur. Ceram. Soc., 21 (2001) 2863.   DOI
19 T. B. Ghosh, S. Dhabal and A. K. Datta: J. Appl. Phys., 94 (2003) 4577.   DOI
20 M. Hirano, N. Nakahara, K. Ota, O. Tanaike and N. Inagaki: J. Solid State Chem., 170 (2003) 39.   DOI
21 J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. R. Morante: J. Appl. Phys., 92 (2002) 85.