Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.4.297

Fabrication and Characterization of Ag Particles by Polyol Process and Wet Chemical Process  

Yoo, Juyeon (Department of Energy Engineering, Dankook University)
Jang, Hyosung (Department of Energy Engineering, Dankook University)
Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.23, no.4, 2016 , pp. 297-302 More about this Journal
Abstract
Ag nanoparticles are extensively studied and utilized due to their excellent catalysis, antibiosis and optical properties. They can be easily synthesized by chemical reduction methods and it is possible to prepare particles of uniform size and high purity. These methods are divided into vapor methods and liquid phase reduction methods. In the present study, Ag particles are prepared and analyzed through two chemical reduction methods using solvents containing a silver nitrate precursor. When Ag ions are reduced using a reductant in the aqueous solution, it is possible to control the Ag particle size by controlling the formic acid ratio. In addition, in the Polyol process, Ag nanoparticles prepared at various temperatures and reaction time conditions have multiple twinned and anisotropic structures, and the particle size variation can be confirmed using field emissions scanning electron microscopy and by analyzing the UV-vis spectrum.
Keywords
Ag; Nanoparticles; Polyol process; Chemical Reduction Method;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Suwanboon, R. Tanattha and R. Tanakorn: J. Sci. Technol., 30 (2008) 65.
2 Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia: Chem. Mater., 14 (2002) 4736.   DOI
3 L. H. Bac, W. H. Gu, J. C. Kim, B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 19 (2012) 55.   DOI
4 W. Chen, W. Cai, L. Zhang, G. Wang and L. Zhang: J. Colloid Interface Sci., 238 (2001) 291.   DOI
5 A. Frattini, N. Pellegri, D. Nicastro and O. de Sanctis: Mater. Chem. Phys., 94 (2005) 148.   DOI
6 A. Henglein: Langmuir, 17 (2001) 2329.   DOI
7 A. A. Ashkarran, S. Estakhri, M. R. H. Nezhad and S. Eshghi: Phys. Procedia, 40 (2013) 76.   DOI
8 M. Yamamoto and M. Nakamoto: J. Mater. Chem., 13 (2003) 2064.   DOI
9 C. Feldmann: Adv. Mater., 13 (2001) 1301.   DOI
10 P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-Vincent, F. Fievet: J. Mater. Sci., 35 (2000) 3767.   DOI
11 J. H. Lee, S. H. Kim, J. W. Kim, M. H. Lee and Y. D. Kim: J. Korean Powder Metall. Inst., 19 (2012) 60.   DOI
12 Y. Zhang, P. Yang and L. Zhang: Mater. Chem. Phys., 138 (2013) 767.   DOI
13 Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa and M. Nogami: J. Phys. Chem., 111 (2007) 9095.
14 H. Park, M. H. Kim and W. H. Park: Text. Sci. Eng., 52 (2015) 185.   DOI
15 Y. H. Kim and J. S. Lee: Polym. Sci. Technol., 27 (2016) 29.
16 V. K. Sharma, R. A. Yngard and Y. Lin: Adv. Colloid Interface Sci., 145 (2009) 83.   DOI
17 Y. Sun, B. Mayers, T. Herricks and Y. Xia: Nano Lett., 3 (2003) 955.   DOI