Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.1.38

Synthesis and Electromagnetic Wave Absorbing Property of BaTiO3@Fe Nanofibers with Core-Shell Structure  

Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Jang, Dae-Hwan (Department of Fusion Chemical Engineering, Hanyang University)
Sung, Ki-Hoon (Department of Fusion Chemical Engineering, Hanyang University)
Lee, Kyuman (Department of Integrative Engineering, Hoseo Graduate School of Venture)
Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
Publication Information
Journal of Powder Materials / v.23, no.1, 2016 , pp. 38-42 More about this Journal
Abstract
$BaTiO_3$-coated Fe nanofibers are synthesized via a three-step process. ${\alpha}-Fe_2O_3$ nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The $BaTiO_3$ coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the ${\alpha}-Fe_2O_3$ to Fe. The thickness of the $BaTiO_3$ shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the $BaTiO_3@Fe$ nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the $BaTiO_3@Fe$ nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.
Keywords
Core-shell; Nanofiber; Electrospinning; $BaTiO_3$; Fe;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. J. Chen, F. Zhang, G. Zhao, X. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao and G. Xiao: J. Phys. Chem. C, 114 (2010) 9239.   DOI
2 Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang and Q. Ouyang: Nanoscale, 5 (2013) 12296.   DOI
3 L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu and F. Li: Nanotechnology, 21 (2010) 095708.   DOI
4 Z. Han, D. Li, H. Wang, X. G. Liu, J. Li, D. Y. Geng and Z. D. Zhang: Appl. Phys. Lett., 95 (2009) 023114.   DOI
5 R. Han, X. Han, L. Qiao, T. Wang and F. Li: Mater. Chem. Phys., 128 (2011) 317.   DOI
6 H. Song, K. J. Lee, K. H. Kim, S. T. Oh, S. K. Lee and Y. H. Choa: J. Nanosci. Nanotechnol., 10 (2010) 106.   DOI
7 A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor and S. A. A. Hamid: J. Appl. Phys., 92 (2002) 876.   DOI
8 A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki and S. Ohkoshi: J. Am. Chem. Soc., 131 (2008) 1170.
9 J. Liu, M. Itoh, M. Terada, T. Horikawa and K. Machida: Appl. Phys. Lett., 91 (2007) 093101.   DOI
10 X. G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z. G. Xie, D. J. Kang and Z. D. Zhang: Carbon, 47 (2009) 470.   DOI
11 L. Wang, F. He and Y. Wan: J. Alloys. Compd., 509 (2011) 4726.   DOI
12 C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang and Y. J. Chen: J. Phys. Chem. C, 114 (2010) 16229.   DOI
13 Y. J. Chen, P. Gao, C. L. Zhu, R. X. Wang, L. J. Wang, M. S. Cao and X. Y. Fang: Appl. Phys. Lett., 106 (2009) 054303.