Browse > Article
http://dx.doi.org/10.4150/KPMI.2012.19.5.343

Low Temperature Debinding Process Using Oxygen Plasma for Flexible Printed Electronics  

Lee, Young-In (Institute of Nano Sensor Technology, Hanyang University)
Publication Information
Journal of Powder Materials / v.19, no.5, 2012 , pp. 343-347 More about this Journal
Abstract
In this study, an oxygen plasma treatment was used as a low temperature debinding method to form a conductive copper feature on a flexible substrate using a direct printing process. To demonstrate this concept, conductive copper patterns were formed on polyimide films using a copper nanoparticle-based paste with polymeric binders and dispersing agents and a screen printing method. Thermal and oxygen plasma treatments were utilized to remove the polymeric vehicle before a sintering of copper nanoparticles. The effect of the debinding methods on the phase, microstructure and electrical conductivity of the screen-printed patterns was systematically investigated by FE-SEM, TGA, XRD and four-point probe analysis. The patterns formed using oxygen plasma debinding showed the well-developed microstructure and the superior electrical conductivity compared with those of using thermal debinding.
Keywords
Copper paste; Oxygen plasma treatment; Debinding; Polyimide; Flexible printed electronics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates and M. McCreary: Nature, 423 (2003) 136.
2 Y.-S Goo, Y.-I. Lee, N. Kim, K-J. Lee, B. Yoo, S.-J. Hong, J.-D. Kim and Y.-H. Choa: Surf. Coat. Technol., 205 (2010) S369.   DOI   ScienceOn
3 C. E. Wilkes, J. W. Summers and C. A. Daniels: PVC Handbook, Hanser Gardner Publications, Inc., USA (2005).
4 F. C..Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen and J. Kristensen: Sol. Energy Mater. Sol. Cells, 93 (2009) 422.   DOI   ScienceOn
5 D.-Y. Shin, Y. Lee and C. H. Kim: Thin Solid Films, 517 (2009) 6112   DOI   ScienceOn
6 S. Y. Hwang, H. Y. Jung, J.-H. Jeong and H. Lee: Thin Solid Films, 517 (2009) 4104.   DOI   ScienceOn
7 W. Su, P. Li, L. Yao, F. Yang, L. Liang and J. Chen: Chem Phys Chem, 12 (2011) 1143.   DOI   ScienceOn
8 J. Puetz and M. A. Aegerter: Thin Solid Films, 516 (2008) 4495.   DOI   ScienceOn
9 Y.-I. Lee and Y.-H. Choa: J. Mater. Chem., 22 (2012) 12517.   DOI   ScienceOn
10 Y.-S. Cho, S.-J. Son, Y. K. Kim, K. O. Ohung and C. J. Choi: J. Kor. Powd. Met. Inst., 17 (2010) 390 (Korean).   DOI   ScienceOn
11 B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim: Thin Solid Films, 515 (2007) 7706.   DOI   ScienceOn
12 M. Myers: J. Phys. B, 2 (1969) 393   DOI   ScienceOn
13 T. H. J. van Osch, J. Perelaer, A. W. M. de Laat and U. S. Schubert: Adv. Mater., 20 (2008) 20, 343.   DOI   ScienceOn
14 Y.-L. Tai and Z.-G. Yang: J. Mater. Chem., 21 (2011) 5938.   DOI   ScienceOn
15 R. K. Enneti, S. J. Park, R. M. German and S. V. Atre: Mater. Manuf. Processes, 27 (2012) 103.   DOI
16 J. L. Bolland: Proc. R. Soc. London Ser. A, 186 (1946) 218.   DOI
17 M. A. Hartney, D. W. Hess and D. S. Soane: J. Vac. Sci. Technol. B, 7 (1989) 1.
18 Y. Kim, M. R. Baklanov, T. Conard, M. de Potter and S. Vanhaelemeersch: J. Electrochem. Soc., 146 (1999) 1549.   DOI   ScienceOn