Browse > Article
http://dx.doi.org/10.4150/KPMI.2006.13.4.243

Synthesis and Phase Transformation Behavior of YAG Powders by a Mechanochemical Solid Reaction  

Jung Hyun-Gi (Division of Materials Science and Engineering, Hanyang University)
Hwang Gil-Ho (Division of Materials Science and Engineering, Hanyang University)
Lim Kwang-Young (School of Materials Science and Engineering, Hongik University)
Lee Young-Hun (Electronic Parts & Materials Group, Korea Institute of Ceramic Engineering and Technology)
Kang Sung-Goon (Division of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of Powder Materials / v.13, no.4, 2006 , pp. 243-249 More about this Journal
Abstract
Yttrium aluminum garnet (YAG) powders were synthesized via mechanochemical solid reaction using $Y_2O_3$ with three types of aluminum compounds. $Y_2O_3$ reacted mechanochemically with all A1 compounds and formed YAM (yttrium aluminum monoclinic), YAG and YAP (yttrium aluminum perovskite) phases depending on the starting materials. The ground samples containing ${\gamma}-A1_2O_3$ showed the best reactivity, whereas the ground sample containing A100H, which had the largest surface area, exhibited pure YAG after calcination at $1200^{\circ}C$. The sample containing Al had the least reactivity, producing YAP along with YAG at $1200^{\circ}C$. The types and grinding characteristics of the starting materials and grinding time are believed to be important factors in the mechanochemical synthesis of YAG.
Keywords
YAG; Grinding; Phase transformation; Synthesis; XRD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Gowda: J. Mater. Sci. Lett., 5 (1986) 1029   DOI
2 S.-M. Sim, K. Keller, and T.-I. Mah: J. Mat. Sci., 35 (2000) 713   DOI   ScienceOn
3 T. Tachiwaki, M. Yoshinaka, K. Hirota, T. Ikegami, and O. Yamaguchi: Soild State Comm., 119 (2001) 603   DOI   ScienceOn
4 R. Manalert and M. N. Rahaman: J. Mater. Sci., 31 (1996) 3453
5 M. Nyman, J. Caruso, M. J. Hampden-Smith, and T. T. Kodas: J. Am. Ceram. Soc., 80 (1997) 1231   DOI   ScienceOn
6 L. B. Kong, J. Ma, and H. Huang: Mat. Lett., 56 (2002) 344   DOI   ScienceOn
7 T. A. Parthasarathy, T. Mah, and K. Keller: Ceram. Eng. Sci. Proc., 12 (1991) 1767
8 A. Ikesue, I. Furusato, and K. Kamata: J. Am. Ceram. Soc., 78 (1995) 225   DOI   ScienceOn
9 I. Matsubara, M. Parathaman, S. W. Allison, M. R. Cates, D. L. Beshears, and D. E. Holocomb: Mat. Res. Bull., 35 (2000) 217   DOI   ScienceOn
10 Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama: J. Phy. Chem. Solids, 60 (1999) 1855   DOI   ScienceOn
11 H. M. Wang, M. C. Simmonds and J. M. Rodenburg:Mater. Chem. Phys., 77 (2002) 802   DOI   ScienceOn
12 G. S. Corman: Ceram. Eng. Sci. Proc., 12 (1991) 1745
13 J. Z. Jiang, F. W. Poulsen, and S. Morup: J. Mater. Res., 14 (1999) 1343   DOI   ScienceOn
14 G. Nicoara, D. Fratiloiu, M. Nogues, J. L. Dormann, and F. Vasiliu: Mater. Sci. Forum, 235-238 (1997) 145
15 Q. Zhang, and F. Saito: Powder Technol., 129 (2003) 86   DOI   ScienceOn
16 J. S. Reed: Principles of ceramics processing, Alfred, New York, 1994
17 P. Alphonse, and M. Courty: Thermochim. Acta, 425 (2005) 75   DOI   ScienceOn
18 K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hess:J. Am. Ceram. Soc., 77 (1994) 2866   DOI   ScienceOn
19 J. Xue, D. Wan, S. E. Lee, and J. Wang: J. Am. Ceram. Soc., 82 (1999) 1687   DOI
20 A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida: J. Am. Ceram. Soc., 78 (1995) 1033   DOI   ScienceOn
21 M. Simoneau, G. L'Esperance, M.L. Trudeau, and R. Schulz: J. Mater. Res., 9 (1994) 535   DOI