Browse > Article
http://dx.doi.org/10.9798/KOSHAM.2011.11.2.127

Probabilistic Analysis of Independent Storm Events: 1. Construction of Annual Maximum Storm Event Series  

Park, Min-Kyu (서울시정개발연구원)
Yoo, Chul-Sang (고려대학교 건축사회환경공학과)
Publication Information
Journal of the Korean Society of Hazard Mitigation / v.11, no.2, 2011 , pp. 127-136 More about this Journal
Abstract
In this study, annual maximum storm events are proposed to determined by the return periods considering total rainfall and rainfall intensity together. The rainfall series at Seoul since 1961 are examined and the results are as follows. First, the bivariate exponential distribution is used to determine annual maximum storm events. The parameter estimated annually provides more suitable results than the parameter estimated by whole periods. The chosen annual maximum storm events show these properties. The events with the biggest total rainfall tend to be selected in the wet years and the events with the biggest rainfall intensity in the wet years. These results satisfy the concept of critical storm events which produces the most severe runoff according to soil wetness. The average characteristics of the annual maximum storm events said average rainfall intensity 32.7 mm/hr in 1 hr storm duration(total rainfall 32.7 mm), average rainfall intensity 9.7 mm/hr in 24 hr storm duration(total rainfall 231.6 mm) and average rainfall intensity 7.4 mm/hr in 48 hr storm duration(total rainfall 355.0 mm).
Keywords
annual maximum storm events; bivariate analysis; freund's bivariate exponential distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yue, S., Ouarda T.B.M.J., Bobe, B., Gegendre, P., and Bruneau, P. (1999) The Gumbel mixed model, Journal of Hydrology, Vol. 226(1-2), pp. 88-100.   DOI   ScienceOn
2 Yue, S. and Rasmussen, P. (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological application, Hydrological Processes, Vol. 16, pp. 2881-2898.   DOI   ScienceOn
3 Yue, S. and Wang, C.Y. (2004) A comparison of two bivariate extreme value distribution, Stochastic Environmental Research and Risk Assessment, Vol. 18(2), pp. 61-66.   DOI   ScienceOn
4 Zhang, L. and Singh, V.P. (2007) Bivariate rainfall frequency distributions using Archimedean copulas, Journal of Hydrology, Vol. 332(1-2), pp. 93-109.   DOI   ScienceOn
5 Tawn, J.A. (1990) Modelling multivariate extreme value distribution, Biometrica, Vol. 77(2), pp. 245-253.   DOI   ScienceOn
6 Michele, C.D., Salvadori, G., Canossi, M., Petaccia, A., and Rosso, R. (2005) Bivariate Statistical Approach to Check Adequacy of Dam Spillway, Journal of Hydrologic Engineering, Vol. 10, No. 1, pp. 50-57.   DOI   ScienceOn
7 Yue, S. (2000) Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls, Hydrological Sciences Journal, Vol. 45(2), pp. 315-326   DOI   ScienceOn
8 Yue, S. (2001a) The Gumbel logistic model for representing a multivariate storm event, Advances in Water Resources, Vol. 24(2), pp. 179-185.
9 Yue, S. (2001b) A bivariate gamma distribution for use in multivariate flood frequency analysis, Hydrological Processes, Vol. 15(6), pp. 1033-1045.   DOI   ScienceOn
10 Kurothe, R. S., Goel, N.K., and Mathur, B.S., (1997) Derived flood frequency distribution of negatively correlated rainfall intensity and duration, Water Resources Research, Vol. 33(9), pp. 2103-2107.   DOI   ScienceOn
11 Pilgrim, D.H. (1987) Australian Rainfall and Runoff - A Guide to Flood Estimation Volume 1. revised edition, The Institute of Engineers, Australia, pp. 160-161.
12 Tawn, J.A. (1988) Bivariate extreme value theory: models and estimation, Biometrica, Vol. 75(3), pp. 397-415.   DOI   ScienceOn
13 Goel, N.K., Kurothe, R.S., Mathur, B.S., and Vogel, R.M. (2000) A derived flood frequency distribution for correlated rainfall intensity and duration, Journal of Hydrology, Vol. 228, pp. 56-67.   DOI   ScienceOn
14 Grimaldi, S. and Serinaldi, F. (2006) Asymmetric copula in multivariate flood frequency analysis, Advances in Water Resources, Vol. 29, pp. 1155-1167.   DOI   ScienceOn
15 Gumbel, E.J. (1958) Statistics of Extremes. Columbia University Press, pp. 156-305.
16 Kotz, S., Balakrishnan, N., and Johnson. N.L. (2000) Continuous Multivariate Distributions Volume 1: Models and Applications. John Wiley & Sons, INC., pp. 350-362.
17 Gumbel, E.J. (1960) Bivariate exponential distributions, Journal of the American Statistical Association, Vol. 55, pp. 698-707.   DOI   ScienceOn
18 Haan, C.T. (2002) Statistical Methods in Hydrology, 2nd ed. Iowa State Press, pp. 165-167.
19 Hayakawa, Y. (1994) The construction of new bivariate exponential distributions from a Bayesian perspective, Journal of the American Statistical Association, Vol. 89, pp. 1044-1049.   DOI   ScienceOn
20 Box, G.E.P. and Cox, D. (1964) An analysis of transformation (with discussion), Journal of the Royal Statistical Society Series B, Vol. 26, pp. 211-246.
21 Goel, N.K., Seth, S.M., and Chandra, S. (1998) Multivariate modeling of flood flows, Journal of Hydraulic Engineering, Vol. 124(2), pp. 146-155.   DOI   ScienceOn
22 Coles, S. and Tawn, J.A. (1991) Modelling extreme multivariate events, Journal of the Royal Statistical Society Series B, Vol. 53(2), pp. 377-392.
23 Cordova, J.R. and Rodriguez-Iturbe, I. (1985) On probabilistic structure of storm surface runoff, Water Resources Research, Vol. 21(5), pp. 755-763.   DOI   ScienceOn
24 Freund, J. (1961) A bivariate extension of the exponential distribution, Journal of the American Statistical Association, Vol. 56, pp. 971-977.   DOI   ScienceOn
25 Bacchi, B., Becciu, G., and Kottegoga, N.T. (1994) Bivariate exponential model applied to intensities and durations of extreme rainfall, Journal of Hydrology, Vol. 155, pp. 225-236.   DOI   ScienceOn
26 Adams, B.J. and Papa, F. (2000) Urban Stormwater Management Planning with Analytical Probabilistic Models, John Wiley & Sons, INC., pp. 55-68.
27 Akan, A.O. and Houghtalen, R.J. (2003) Urban Hydrology, Hydraulics, and Stormwater Quality - Engineering Applications and Computer Modeling, John Wiley & Sons, INC., pp. 246-249.
28 Arnold, B.C. and Strauss, D. (1988) Bivariate distributions with exponential conditionals, Journal of the American Statistical Association, Vol. 83, pp. 522-527.   DOI   ScienceOn
29 김대하, 유철상, 김현준 (2007) 조선왕조실록 및 측우기 기록에 나타난 주요호우사상의 평가 : 2. 정량적 평가, 한국수자원학회논문집, 제40권, 제7호, pp. 545-554.
30 권영문, 김태웅 (2009) 이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도, 대한토목학회논문집, 제29권, 제2B호, pp. 155-162.
31 이동률, 정상만 (1992) 한강유역 강우의 시공간적 특성, 한국수자원학회논문집, 제25권, 제4호, pp. 75-85.
32 권재호, 박무종, 김중훈 (2004) 비점오염원 산정을 위한 강우 분석, 한국수자원학회 04 학술발표회논문집, pp. 666-670.
33 정종호, 윤용남 (2007). 수자원설계실무, 구미서관.
34 박상덕 (1995) 매년최대 연속 강우량에 따른 강우사상 계열의 확률분포에 관한 연구, 한국수자원학회논문집, 제28권, 제2호, pp. 145-154.
35 전종갑, 문병권 (1997) 측우기 강우량 자료의 복원과 분석, 한국기상학회지, 제33권, 제4호, pp. 691-707.
36 김남원 (2000) 지역별 설계강우의 시간적 분포, 대한토목학회 2000년도 학술발표회 논문집(III), pp. 51-54.
37 기상청 (2004) 근대기상 100년사.