Browse > Article
http://dx.doi.org/10.5806/AST.2021.34.5.231

Application and evaluation of machine-learning model for fire accelerant classification from GC-MS data of fire residue  

Park, Chihyun (Daejeon District Office, National Forensic Service)
Park, Wooyong (Daejeon District Office, National Forensic Service)
Jeon, Sookyung (Daejeon District Office, National Forensic Service)
Lee, Sumin (Daejeon District Office, National Forensic Service)
Lee, Joon-Bae (Daegu District Office, National Forensic Service)
Publication Information
Analytical Science and Technology / v.34, no.5, 2021 , pp. 231-239 More about this Journal
Abstract
Detection of fire accelerants from fire residues is critical to determine whether the case was arson or accidental fire. However, to develop a standardized model for determining the presence or absence of fire accelerants was not easy because of high temperature which cause disappearance or combustion of components of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine performances of random forest and support vector machine models.
Keywords
GC-MS; machine learning; random forest; support vector machine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. M. Smith, Anal. Chem., 54(13), 1399A-1409A (1982).   DOI
2 A. Hamins, M. Bundy and S. E. Dillon, J. Fire Prot. Eng., 15(4), 265-285 (2005).   DOI
3 A. D. Pert, M. G. Baron and J. W. Birkett, J. Forensic Sci., 51(5), 1033-1049 (2006).   DOI
4 S. T. Teng, A. D. Williams and K. Urdal, J. High. Resolut. Chromatogr., 17(6), 469-475 (1994).   DOI
5 R. O. Keto, J. Forensic Sci., 40(3), 412-423 (1995).
6 C. H. Wu, C. L. Chen, C. T. Huang, M. R. Lee and C. M. Huang, Anal. Lett., 37(7), 1373-1384 (2004).   DOI
7 J. N. Eisenberg and T. E. McKone, Environ. Sci. Technol., 32(21), 3396-3404 (1998).   DOI
8 E. Akkas, L. Akin, H. E. Cubukcu and H. Artuner, Comput. Geosci., 80, 38-48 (2015).   DOI
9 M. G. Yildiz, T. Davran-Candan, M. E. Gunay and R. Yildirim, J. CO2 Util., 31, 27-42 (2019).   DOI
10 D. C. Mann, J. Forensic Sci., 32(3), 616-628 (1987).
11 J. S. Cramer, The Origins of Logistic Regression, http://dx.doi.org/10.2139/ssrn.360300, Assessed 25 Jan 2003.
12 L. Breiman, M. Lear., 45(1), 5-32 (2001).   DOI
13 C. Cortes and V. Vapnik, M. Lear., 20(3), 273-297 (1995).   DOI
14 A. Luque, A. Carrasco, A. Martin and A. de las Heras, Pattern Recognit., 91, 216-231 (2019).   DOI
15 H. He, Y. Bai, E. A. Garcia and S. Li, 'ADASYN: Adaptive synthetic sampling approach for imbalanced learning', IEEE, 2008.