Browse > Article
http://dx.doi.org/10.5806/AST.2021.34.4.160

Improved HPLC-UV method for determination of five synthetic dyes in Typha orientalis  

Ko, Kyung Yuk (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Choi, Eun Young (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Jeong, Se Hee (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Paek, Ock jin (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Lee, Chan (Department of Food Science and Technology, Chung-Ang University)
Heo, Huijin (Division of Food and Animal Science, Chungbuk National University)
Oh, She-Wook (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Lee, Chulhyun (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Kang, Juhye (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Cho, Sooyeul (Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation)
Publication Information
Analytical Science and Technology / v.34, no.4, 2021 , pp. 160-171 More about this Journal
Abstract
Synthetic azo dyes are used extensively in herbal medicines to render the medicines more visually attractive to consumers. This study developed and validated a rapid high-performance liquid chromatography (HPLC) method to determine whether synthetic colorants such as Tartrazine, Auramine O, Metanil yellow, Sunset yellow, and Orange II are used extensively in Typha orientalis. To increase the recovery of the synthetic dyes, this method employed containing 50 mM ammonium acetate in 70 % methanol at first extraction and 100 mM HCl in 70 % methanol at second extraction. Five synthetic pigments in Typha orientalis were separated by gradient elution with a mobile phase consisting of acetonitrile and 50 mM ammonium acetate in distilled water at ultra-violet (UV) detection 428 nm or 500 nm. Additionally, this study established the liquid chromatography tandem mass spectrometry (LC-MS/MS) method to confirm positive samples suspected by HPLC results. The HPLC-UV method had good linearity, indicating r2> 0.999. The recoveries of the samples spiked with three different concentration ranged from 73.8~91.5 %, and relative standard deviation values indicated 0.2~5.2 %. The established LC-MS/MS could successfully identify the synthetic pigments in herbal medicine samples. The study demonstrates that Typha orientalis adulterated by yellowish synthetic dyes can be successfully distinguished when using the HPLC-UV method.
Keywords
herbal medicines; synthetic dyes; Typha orientalis; HPLC; LC-MS/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Anliker, Richardson M., Ed., The Royal Society of Chemistry. London, UK. 166-187 (1986).
2 J. C. Tung, W. C. Huang, J. C. Yang, G.Y. Chen, C. C. Fan, Y. C. Chien, P. S. Lin, S. C. C. Lung and W. C. Chang, Environ. Toxicol., 32(11), 2379-2391 (2017).   DOI
3 S. Parodi, L. Santi, P. Russo, A. Albini, D. Vecchio, M. Pala, L. Ottaggio and A. Carbone, J. Toxicol. Environ. Health, 9(5-6), 941-952 (1982).   DOI
4 T. N. T. Kim, T. T. Bui, A. T. Pham, V. T. Duong and T. H. G Le, J. Anal. Methods Chem., 2019, Article ID 8639528 (2019).
5 T. I. Tikhomirova, G. R. Ramazanova and V. V. Apyari, Food Chem., 221, 351-355 (2017).   DOI
6 G. Karanikolopoulos, A. Gerakis, K. Papadopoulou and I. Mastrantoni, Food Chem., 177, 197-203 (2015).   DOI
7 F. Martin, J. M. Oberson, M. Meschiari and C. Munari, Food Chem., 197, 1249-1255 (2016).   DOI
8 C. Guo, K. Li, S. Xing, H. Sun, F. Shi, G. Zhang and H. Sun, Euro. J. Mass Spectrom., 25(5), 419-427 (2019).   DOI
9 M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar and L. A. Escaleira, Talanta, 76(5), 965-977 (2008).   DOI
10 Z. Ding, P. Deng, Y. Wu, Y. Tian, G. Li, J. Liu and Q. He, Molecules, 24(6), 1178 (2019).   DOI
11 F. Qi, N. Jian, L. Qian, W. Cao, Q. Xu and J. Li, Anal. Bioanal. Chem., 409(24), 5697-5709 (2017).   DOI
12 Z. Hu, P. Qi, N. Wang, Q. Q. Zhou, Z. H. Lin, Y. Z. Chen, X. W. Mao, J. J. Jiang and C. Li, Food Chem., 309, 125745 (2020).   DOI
13 YunNan Institute for Food and Drug Control (IFDC), SiChuan IFDC, JiLin IFDC. National Institutes for Food and Drug Control (NIFDC), China (2018.03). Available online: https://www.nifdc.org.cn/nifdc/bzhchx/ypjyfaxm/index.html
14 M. Hesse, H. Halbritter, R. Zetter, M. Weber, R. Buchner, A. Frosch-Radivo and S. Ulrich, An illustrated handbook, New York: SpringerWein; p.264. USA.
15 S. M. M. Hamdi, M. Assadi and M. Ebadi, Asian J. Plant Sci. 8(7), 455-464 (2009).   DOI
16 P. Arguelles, K. Reinhard and D. H. Shin, Anat. Rec., 298(6), 1182-1190 (2015).   DOI
17 AOAC, J. AOAC Interational, 96(1), 269-272 (2012).
18 X. Liu, J. L Yang, J. H. Li, X. L. Li, J. Li, X. Y. Lu, J. Z. Shen, Y. W. Wang and Z. H. Zhang, Food Addi. Contam., 28(10), 1315-1323 (2011).   DOI
19 F. Feng, Y. Zhao, W. Yong, L. Sun, G. Jiang and X. Chu, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 879(20), 1813-1818 (2011).   DOI
20 Yan, H., Li, W., Cheng, X., Wei, F., Ma, S. Chinese Pharm. Affairs, 32(4), 463-468 (2018).
21 Y. S. Al-Degs, Food Chem., 117(3), 485-490 (2009).   DOI
22 P. Y. Liu, B. Q. Chen, S. S. Yuan, B. B. Yang, T. Yang, M. H. Shi and G. H. Lyu, Zhongguo Zhong Yao Za Zhi., 44(8), 1537-1544 (2019).
23 B. Esen, T. Oymak and E. Dural, Int. J. Sci. Eng. Res., 9(8), 72-76 (2018).
24 M. Xu, B. Huang, F. Gao, C. Zhai, Y. Yang, L. Li, W. Wang and L. Shi, Front. Pharmcol., 10, Article 1446, 1-8 (2019).   DOI
25 K. Rovina, S. Siddiquee and S. M. Shaarani, Crit. Rev. Anal. Chem., 47(4), 309-324 (2017).   DOI
26 K. S. Rowe and K. J. Rowe, J. Pediatrics, 125(5), 691-698 (1994).   DOI
27 T. Nagaraja and T. Desiraju, Food Chem. Toxicol., 31(1), 41-44 (1993).   DOI
28 I. S. Khan, M. N. Ali, R. Hamid and S. A. Ganie, Toxicol. Rep., 7, 370-375 (2020).   DOI
29 M. Solis, A. Solis, H. I. Perez, N. Manjarrez and M. Flores, Process Biochem., 47(12), 1723-1748 (2012).   DOI
30 K. T. Chung, G. E. Fulk and M. Egan, Appl. Environ. Microbiol., 35(3), 558-562 (1978).   DOI