Browse > Article
http://dx.doi.org/10.5806/AST.2021.34.2.68

Development and validation of a qualitative GC-MS method for THCCOOH in urine using injection-port derivatization  

Sim, Yeong Eun (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Kim, Ji Woo (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Kim, Jin Young (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Publication Information
Analytical Science and Technology / v.34, no.2, 2021 , pp. 68-77 More about this Journal
Abstract
Cannabis is one of the most abused drugs in Korea. The main psychoactive component in cannabis, Δ9-tetrahydrocannabinol, is metabolized to 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) and THCCOOH-glucuronide (THCCOOH-glu) in the human liver, whereby the amount of THCCOOH-glu found in urine is twice as high as that of THCCOOH. The analytical process adapted by the majority of urine drug-testing programs involves a two-step method consisting of an initial immunoassay-based screening test followed by a confirmatory test if the screening test result is positive. In this study, a qualitative gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the detection of THCCOOH in human urine, where THCCOOH-glu was converted into THCCOOH by alkaline hydrolysis. For purification of the urine extract prior to instrumental analysis, high-speed centrifugation was used to minimize interference. In addition, an injection-port derivatization method using ethyl acetate and N,O-bis(trimethylsilyl)-trifluoroacetamide containing 1 % trimethylchlorosilane was employed to reduce the time required for derivatization, and an aliquot of the final solution was injected into the GC-MS. The method was validated by measuring the selectivity, limit of detection (LOD), and repeatability. The sensitivity, specificity, precision, accuracy, Kappa, F-measure, false positive, and false negative rate were determined by comparing the GC-MS results with those obtained using the immunoassay. The LOD was determined to be 0.32 ng/mL, while the repeatability was within 9.1 % for THCCOOH. Furthermore, a comparison study was carried out, whereby the screening immunoassay exhibited a sensitivity of 86.4 % and a specificity of 100 % compared to GC-MS. The applicability of the developed method was examined by analyzing spiked urine and forensic urine samples obtained from suspected cannabis abusers (n = 221).
Keywords
qualitative analysis; validation; injection-port derivatization; urinary THCCOOH; GC-MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Halket, D. Waterman, A. M. Przyborowska, R. K. Patel, P. D. Fraser and P. M. Bramley, J. Exp. Bot., 56, 219-243 (2005).   DOI
2 Q. Wang, L. Ma, C. R. Yin and L. Xu, J. Chromatogr. A, 1296, 25-35 (2013).   DOI
3 J. Wu and H. K. Lee, Anal. Chem., 78, 7292-7301 (2006).   DOI
4 A. Marsol-Vall, M. Balcells, J. Eras and R. Canela-Garayoa, Food Chem., 204, 210-217 (2016).   DOI
5 A. Marsol-Vall, M. Balcells, J. Eras and R. Canela-Garayoa, J. Chromatogr. A, 1453, 99-104 (2016).   DOI
6 A. F. Oliveira, E. C. de Figueiredo and A. J. Dos Santos-Neto, J. Pharm. Biomed. Anal., 73, 53-58 (2013).   DOI
7 K. F. da Cunha, R. Lanaro, A. F. Martins, K. D. Oliveira and J. L. Costa, Forensic Toxicol., 39, 222-229 (2021).   DOI
8 R. Fogerson, D. Schoendorfer, J. Fay and V. Spiehler, J. Anal. Toxicol., 21, 451-458 (1997).   DOI
9 P. S. Cheng, C. Y. Fu, C. H. Lee, C. Liu and C. S. Chien, J. Chromatogr. B, 852, 443-449 (2007).   DOI
10 M. Gaugain-Juhel, B. Delepine, S. Gautier, M.P. Fourmond, V. Gaudin, D. Hurtaud-Pessel, E. Verdon and P. Sanders, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess, 26, 1459-1471 (2009).   DOI
11 M. Hadener, W. Weinmann, D. R. van Staveren and S. Konig, Bioanalysis, 9, 485-496 (2017).   DOI
12 Supreme Prosecutors' Office, 'White paper on drug-related crimes 2019-Chapter 2', Seoul, Korea, 2020.
13 S. Foley, J. R. Karlsen and T. J. Putninns, Rev. Financ. Stud., 32, 1798-1853 (2019).   DOI
14 P. M. Kemp, I. K. Abukhalaf, J. E. Manno, B. R. Manno, D. D. Alford, M. E. McWilliams, F. E. Nixon, M. J. Fitzgerald, R. R. Reeves and M. J. Wood, J. Anal. Toxicol., 19, 292-298 (1995).   DOI
15 K. M. Heo, Korean Police Studies Review, 17, 291-316 (2018).   DOI
16 Korea Customs Service, 'Announcement of Drug Smuggling Trends and Countermeasures in 2018', Korea, 2019.
17 M. M. Bergamaschi, A. Barnes, R. H. C. Queiroz, Y. L. Hurd and M. A. Huestis, Anal. Bioanal. Chem., 405, 4679-4689 (2013).   DOI
18 O. Aizpurua-Olaizola, I. Zarandona, L. Ortiz, P. Navarro, N. Etxebarria and A. Usobiaga, Drug Test. Anal., 9, 626-633 (2017).   DOI
19 W. Kwon, J. Y. Kim, S. Suh and M. K. In, Anal. Methods, 5, 3028-3034 (2013).   DOI
20 G. M. Reisfield, B. A. Goldberger and R. L. Bertholf, Bioanalysis, 1, 937-952 (2009).   DOI
21 A. Saitman, H. D. Park and R. L. Fitzgerald, J. Anal. Toxicol., 38, 387-396 (2014).   DOI
22 A. D. de Jager and N. L. Bailey, J. Chromatogr. B, 879, 2642-2652 (2011).   DOI
23 S. J. Mule and G. A. Casella, J. Anal. Toxicol., 12, 102- 107 (1988).   DOI
24 D. K. Lee, M. H. Yoon, Y. P. Kang, J. Yu, J. H. Park, J. Lee and S. W. Kwon, Food Chem., 141, 3931-3937 (2013).   DOI
25 S. P. Elliott, D. W. S. Stephen and S. Paterson, Sci. Justice, 58, 335-345 (2018).   DOI
26 J. M. Halket and V. G. Zaikin, Eur. J. Mass Spectrom., 9, 1-21 (2003).   DOI
27 M. A. ElSohly, 'Marijuana and the cannabinoids, Chapter 7', Humana Press, Totowa, New Jersey, USA, 2007.
28 A. J. Barnes, I. Kim, R. Schepers, E. T. Moolchan, L. Wilson, G. Cooper, C. Reid, C. Hand and M. A. Huestis, J. Anal. Toxicol., 27, 402-407 (2003).   DOI
29 J. C. Cheong, J. Y. Kim, M. K. In and W. J. Cheong, Anal. Sci. Technol., 19, 441-448 (2006).