Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.4.186

Development of the rapid preconcentration method for determination of actinides in large volume seawater sample using Actinide resin  

Kang, Yoo-Gyum (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Park, Ji-Young (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Jang, Mee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Kim, Hyuncheol (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Lee, Jin-Hong (Department of Environmental Engineering, Chung-Nam National University)
Publication Information
Analytical Science and Technology / v.33, no.4, 2020 , pp. 186-196 More about this Journal
Abstract
A simple and rapid preconcentration method of actinide from seawater using Actinide resin was developed and tested with the seawater spiked with a known U and Th. The developed method of Actinide resin based on column chromatography is less time-consuming and requires less labor compared with a typical co-precipitation technique for preconcentration of actinides. U and Th, which are relatively weak-bonded with Actinide resin among actinides, were used to determine the optimum flow rate of seawater sample and evaluate the capacity of Actinide resin to concentrate actinides from seawater. A flow rate of 50 mL min-1 was available with Actinide resin 2 mL (BV, bed volume). When 5 or 10 L of seawater containing U were loaded on Actinide resin (2 mL, BV) at 50 mL min-1, the recovery of U was 93 % and 86 %, respectively. For extraction of actinides bound with Actinide resin, we compared three methods: solvent extraction, ashing-acid digestion, and ashing-microwave digestion. Ashing-microwave digestion method shows the best performance of which is the recovery of 100 % for U and 81 % for Th. For the preconcentration of actinides in 200 L of seawater, a typical coprecipitation method requires 2-3 days, but the developed method in this study is achieved the high recovery of actinides within 12 h.
Keywords
actinide resin; actinides; concentration; seawater; ICP-MS; microwave digestion;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 United Nations Scientific Committee on the Effects of Atomic Radiation, 'Sources and effects of ionizing radiation', UNSCEAR 2008 Report, 2010.
2 K. Buesseler, M. Dai, M. Aoyama, C.B. Nelson, S. Charmasson, K. Higley, V. Maderich, P. Masque, P. J. Morris, D. Oughton and J.N. Smith, Annu. Rev. Mar. Sci., 9, 173-203 (2017).   DOI
3 TEPCO, 'Report on Treated Water Disposal', https://www.tepco.co.jp/en/hd/newsroom/reports/archives/2020/pr20200327-e.html, Accessed 07 May 2020.
4 C.S. Kim et al., 'Marine Environmental Radioactivity Survey', Korea Institute of Nuclear Safety, KINS/ER-092, 2018.
5 L. Leon Vintro, P. I. Mitchell, O. M. Condren, A. B. Downes, C. Papucci and R. Delfanti, Sci. Total. Environ., 237-238, 77-91 (1999).   DOI
6 S. H. Lee, J. Gastaud, J. J. L. Rosa, L. L. W. Kwong, P. P. Povinec, E. Wyse, L. K. Fifield, P. A. Hausladen, L. M. D. Tada and G. M. Santos, J. Radioanal. Nucl. Chem., 248(3), 757-764 (2001).   DOI
7 Q. Cehn, H. Dahlgaard, S. P. Nielsen and A. Aarkrog, J. Radioanal. Nucl. Chem., 253(3), 451-458 (2002).   DOI
8 W. Men, J. Zheng, H. Wang, Y. Ni, T. Aono, S. L. Maxwll, K. Tagami, S. Uchida and M. Yamada, Sci. Rep., 8, 1892 (2018)   DOI
9 S. L. Maxwell, B. K. Culligan, J.B. Hutchison, R. C. Utsey and D. R. McAlister, J. Radioanal. Nucl. Chem., 300, 1175-1189 (2014).   DOI
10 E. P. Horwitz, R. Chiarizia and M. L. Dietz, React. Funct. Polym., 33, 25-36 (1997).   DOI
11 W .C. Burnett, D. R. Corbett, M. Schultz, E. P. Horwitz, R. Chiarizia, M. Dietz, A. Thakkar and M. Fern, J. Radioanal. Nucl. Chem., 226, 121-127 (1997).   DOI
12 I. W. Croudace, P. E. Warwick and R. C. Greenwood, Anal. Chim. Acta., 577, 111-118 (2006).   DOI
13 N. Navarro, L. Rodriguez, A. Alvarez and C. Sancho, Appl. Radiat. Isot., 61, 287-291 (2004).   DOI
14 R. H. Sankhe, A. Sengupta and N. N. Mirashi, J. Radioanal. Nucl. Chem., 302, 617-622 (2014).   DOI
15 S. M. Pike, K. O. Buesseler, C. F. Breier, H. Dulaiova, K. Stastna and F. Sebesta, J. Radioanal. Nucl, Chem., 296, 369-374 (2013).   DOI
16 H. Kim, Y. G. Kang, Y.-J. Lee, S.-D. Choi, J.-M. Lim, and J.-H. Lee, Talanta, 217, in press (2020) https://doi.org/10.1016/j.talanta.2020.121055
17 S. L. Maxwell, B. K. Culligan, J. B. Hutchison, R. C. Utsey and D. R. McAlister, J. Radioanal. Nucl. Chem., 303, 709-717 (2015).   DOI
18 J. Y. Park, J. M. Lim, H. W. Lee and W. Lee, Anal. Sci. Technol., 31(3), 134-142 (2018).   DOI
19 L. Cao, W. Bu, J. Zheng, S. Pan, Z. Wang and S. Uchida, Talanta, 151, 30-41 (2016).   DOI
20 S. A. Yim, E. Han, J. S. Chae and J. Y. Yun, J. Radat. Prot., 35(3), 117-123 (2010).
21 J. Zheng and M. Yamada Appl. Radiat. Isot., 70, 1944-1948 (2012).   DOI
22 E. Braysher, B. Russell, S. Woods, M. Garcia-Miranda, P. Ivanov, B. Bouchard and D. Read, J. Radioanal. Nul. Chem., 321, 183-196 (2019).   DOI
23 S. Maischak and J. Fachinger, 'Solid-phase extraction for the separation of actinides from radioactive waste', WM'01 Conference, Tucson, AZ (2001).
24 D. F. Lupton, J. Merker and F. Scholz, X-Ray Spectrom., 26, 132-140 (1997).   DOI
25 J. Lehto and X. Hou, 'Chemistry and Analysis of Radionuclides', 1st Ed., p255, WILEY-VCH., German, 2012.
26 J. M. Lim, H. Lee, C. J. Kim, M. Jang, J. Y. Park and K. H. Chung, Anal. Sci. Technol., 30(5), 252-261 (2017).   DOI
27 H. Kim, K. H. Chung, Y. H. Jung, M. Jang, M. J. Kang and G. S. Choi, J. Radioanal. Nucl. Chem., 304, 321-327 (2015).   DOI
28 H. Tazoe, H. Obata, T. Yamagata, Z. Karube, H. Nagai and M. Yamada, Talanta, 152, 219-227 (2016).   DOI