Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.2.76

Electrochemically polyaniline-coated microextraction needle for phthalates in water  

Hwang, Yura (Department of Chemistry, Seoul Women's University)
Lee, Yelin (Department of Chemistry, Seoul Women's University)
Ahn, Soyoung (Department of Chemistry, Seoul Women's University)
Bae, Sunyoung (Department of Chemistry, Seoul Women's University)
Publication Information
Analytical Science and Technology / v.33, no.2, 2020 , pp. 76-85 More about this Journal
Abstract
A stainless-steel needle (Hamilton 90022, 22 gauge, 718-㎛ o.d., 413-㎛ i.d., 51-mm length, bevel tip) with an electrochemically coated polyaniline layer having a microbore tunnel was newly prepared as a device for headspace in-needle microextraction. For designing the needle, the polyaniline layer length was optimized, and to evaluate the extraction efficiency for polycyclic aromatic hydrocarbons, numerous cyclic voltammetry scans were conducted. In addition, the optimization of the analytical conditions (including the adsorption and desorption parameters) and the validation of the analytical method were conducted. The optimized adsorption and desorption conditions were 40 ℃ for 30 min and 230 ℃ for 60 s, respectively. Finally, in this study, a polyaniline layer was electrochemically deposited on the in-needle surface, and it exhibited good thermal stability. The needle with the polyaniline layer was repeatedly used more than 200 times during this study. This method has some advantages in terms of the extraction time, extraction efficiency, and analysis cost.
Keywords
polyaniline; cyclic voltammetry; polycyclic aromatic hydrocarbons; microextraction needle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Tsai, H. Shieh, W. Lee and S. Lai, Sci. Total Environ., 278(1-3), 137-150 (2001).   DOI
2 A. Bhargava, R. Khanna, S. Bhargava and S. Kumar, Atmos. Environ., 38(28), 4761-4767 (2004).   DOI
3 E. Yoon, K. Park, H. Lee, J. Yang and C. Lee, Hum. Ecol. Risk Assess., 13(3), 669-680 (2007).   DOI
4 P. Baumard, H. Budzinski and P. Garrigues, Environ. Toxicol. Chem., 17(5), 765-776 (1998).   DOI
5 E. Manoli and C. Samara, Trends Anal. Chem., 18(6), 417-428 (1999).   DOI
6 D. Zuazagoitia, E. Millan and R. Garcia, Chromatographia, 66(9), 773-777 (2007).   DOI
7 J. Cho, J. G. Son, B. Park and B. Chung, Environ. Monit. Assess., 149, 385-393 (2009).   DOI
8 R. J. Law, V. J. Dawes, R. J. Woodhead and P. Matthiessen, Mar. Pollut. Bull., 34(5), 306-322 (1997).   DOI
9 F. Sun, D. Littlejohn and M. D. Gibson, Anal. Chim. Acta, 364, 1-11 (1998).   DOI
10 C. M. Reddy and J. G. Quinn, Mar. Pollut. Bull., 38, 126-135 (1999).   DOI
11 G. Kiss, Z. Varga-Puchony and J. Hlavay, J. Chromatogr. A, 725, 261-272 (1996).   DOI
12 U. H. Yim, S. H. Hong, S. Y. Ha, G. M. Han, J. G. An, N. S. Kim, D. Lim, H. Choi and W. J. Shim, Korea. Sci. Total Environ., 470, 1485-1493 (2014).
13 H. Son, S. Bae and D. Lee, Anal. Chim. Acta, 751, 86-93 (2012).   DOI
14 H.-R. Jeon, H.-H. Son, S. Bae and D. S. Lee, Bull. Korean Chem. Soc., 36 (11), 2730-2739 (2015).   DOI
15 Y. Bang, Y. Hwang, S. Lee, S. Park and S. Bae, J. Sep. Sci., 40(19), 3839-3847 (2017).   DOI
16 S. Lee, J.-H. Yoon, S. Bae and D.-S. Lee, Food Anal. Methods, 11(10), 2767-2777 (2018).   DOI
17 H. Bagheri, E. Babanezhad and A. Es-haghi, J. Chromatogr. A, 1152(1-2), 168-174 (2007).   DOI
18 E. J. Kim, S. Choi and Y. Chang, Environ. Sci. Pollu. R., 18(9), 1508-1517 (2011).   DOI
19 H. Bagheri and A. Roostaie, J. Chromatogr. A, 1238, 22-29 (2012).   DOI
20 X. Li, M. Zhong, S. Xu and C. Sun, J. Chromatogr. A, 1135, 101-108 (2006).   DOI
21 H. Bagheri and M. Saraji, J. Chromatogr. A, 986(1), 111-119 (2003).   DOI
22 D. Djozan and S. Bahar, Chromatographia, 59(1-2), 95-99 (2004).
23 M. Mousavi, E. Noroozian, M. Jalali-Heravi and A. Mollahosseini, Anal. Chim. Acta, 581, 71-77 (2007).   DOI
24 B. Wang, J. Tang and F. Wang, Synth. Met., 13(4), 329-334 (1986).   DOI
25 W. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1, 82(8), 2385-2400 (1986).   DOI
26 R. Qian and J. Qiu, Polym. J., 19(1), 157-172 (1987).   DOI
27 D. Louch, S. Motlagh and J. Pawliszyn, Anal. Chem., 64, 1187-1199 (1992).   DOI
28 J. Desilvestro and W. Scheifele, J. Mater. Chem., 3(3), 263-272 (1993).   DOI
29 L. J. Duic, Z. Mandic and F. Kovacicek, J. Polym. Sci. Poly. Chem., 32(1), 105-111 (1994).   DOI
30 G. Zotti, S. Cattarin and N. Comisso, J. Electroanal. Chem., 239(1-2), 387-396 (1988).   DOI
31 J. Ai, Anal. Chem., 69(16), 3260-3266 (1997).   DOI
32 E. Rianawati and R. Balasubramanian, Phys. Chem. Earth, (Parts A/B/C), 34(13), 857-865 (2009).   DOI
33 J. M. Neff, 'Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates, and biological effects', Applied Science Publishers, 1979.
34 NRCC Polycyclic aromatic hydrocarbons in the aquatic environment: formation, sources, fate and effects on aquatic biota. National Research Council, Canada, 18981, 1-209 (1987).
35 CCREM Canadian Water Quality Guidelines. The Canadian Council of Resource and Environment Ministers, 1987.