Browse > Article
http://dx.doi.org/10.5806/AST.2018.31.5.208

Ultrastructural analysis and quantification of autophagic vacuoles in wild-type and atg5 knockout mouse embryonic fibroblast cells  

Choi, Suin (Electron Microscopy Research Center, Korea Basic Science Institute)
Jeon, Pureum (Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University)
Huh, Yang Hoon (Electron Microscopy Research Center, Korea Basic Science Institute)
Lee, Jin-A (Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University)
Publication Information
Analytical Science and Technology / v.31, no.5, 2018 , pp. 208-218 More about this Journal
Abstract
Autophagy is a cellular process whereby cytosolic materials or organelles are taken up in a double-membrane vesicle structure known as an autophagosome and transported into a lysosome for degradation. Although autophagy has been studied at the genetic, cellular, or biochemical level, systematic ultrastructural quantitative analysis of autophagosomes during the autophagy process by using transmission electron microscopy (TEM) has not yet been reported. In this study, we performed ultrastructural analysis of autophagosomes in wild-type (WT) mouse embryonic fibroblasts (MEFs) and autophagy essential gene (atg5) knockout (KO) MEFs. First, we performed ultrastructural analysis of autophagosomes in WT MEFs compared to atg5 KO MEFs in basal autophagy or starvation-induced autophagy. Although we observed phagopore, early, late autophagosomes, or autolysosomes in WT MEFs, atg5 KO MEFs had immature autophagosomes that showed incomplete closure. Upon starvation, late autophagosomes accumulated in WT MEFs while the number of immature autophagosomes significantly increased in atg5 KO MEF indicating that atg5 plays an important role in the maturation of autophagosomes. Next, we examined autophagosomes in the cell model expressing polyQ-expanded N-terminal fragment of huntingtin. Our TEM analysis indicates that the number of late autophagosomes was significantly increased in the cells expressing the mutant huntingtin, indicating that improving the fusion of autophagosome with lysosome may be effective to enhance autophagy for the treatment of Huntington's disease. Taken together, the results of our study indicate that ultrastructural and quantitative analysis of autophagosomes using TEM can be applied to various human cellular disease models, and that they will provide an important insight for cellular pathogenesis of human diseases associated with autophagy.
Keywords
autophagy; autophagosome; ultrastructure; huntington's disease; transmission electron microscopy (TEM);
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Dikic and Z. Elazar, Nat. Rev. Mol. Cell Biol., 19(6), 349-364 (2018).   DOI
2 J. Bestebroer, P. V'Kovski, M. Mauthe, and F. Reggiori, Traffic, 14(10), 1029-41 (2013).   DOI
3 Y. Murakami, S. Notomi, T. Hisatomi, T. Nakazawa, T. Ishibashi, J. W. Miller, and D. G. Vavvas, Prog. Retin. Eye Res., 37, 114-40 (2013).   DOI
4 S. T. Shibutani and T. Yoshimori, Cell Res., 24(1), 58-68 (2014).   DOI
5 H. Nakatogawa, Essays Biochem., 55, 39-50 (2013).   DOI
6 D. Glick, S. Barth, and K. F. Macleod, J. Pathol., 221(1), 3-12 (2010).   DOI
7 A. B. Birgisdottir, T. Lamark, and T. Johansen, J. Cell Sci., 126(Pt 15), 3237-47 (2013).
8 D. J. Klionsky, K. Abdelmohsen et al., Autophagy, 12(1), 1-222 (2016).   DOI
9 S. R. Yoshii and N. Mizushima, Int. J. Mol. Sci., 18(9) (2017).
10 N. Mizushima, T. Yoshimori, and B. Levine, Cell, 140(3), 313-26 (2010).   DOI
11 S. Barth, D. Glick, and K. F. Macleod, J. Pathol., 221(2), 117-24 (2010).   DOI
12 J. H. Hurley and E. Nogales, Curr. Opin. Struct. Biol., 41, 211-216 (2016).   DOI
13 E. L. Eskelinen, F. Reggiori, M. Baba, A. L. Kovacs, and P. O. Seglen, Autophagy, 7(9), 935-56 (2011).   DOI
14 Y. Ohsumi, Cell Res., 24(1), 9-23 (2014).   DOI
15 E. L. Eskelinen, A. R. Prescott, J. Cooper, S. M. Brachmann, L. Wang, X. Tang, J. M. Backer, and J. M. Lucocq, Traffic, 3(12), 878-93 (2002).   DOI
16 E. L. Eskelinen, C. K. Schmidt, S. Neu, M. Willenborg, G. Fuertes, N. Salvador, Y. Tanaka, R. Lullmann-Rauch, D. Hartmann, J. Heeren, K. von Figura, E. Knecht, and P. Saftig, Mol. Biol. Cell., 15(7), 3132-45 (2004).   DOI
17 N. Mizushima, A. Yamamoto, M. Hatano, Y. Kobayashi, Y. Kabeya, K. Suzuki, T. Tokuhisa, Y. Ohsumi, and T. Yoshimori, J. Cell. Biol., 152(4), 657-68 (2001).   DOI
18 J. A. Lee, C. S. Lim, S. H. Lee, H. Kim, N. Nukina, and B. K. Kaang, J. Neurochem., 85(1), 160-9 (2003).   DOI
19 M. Hariri, G. Millane, M. P. Guimond, G. Guay, J. W. Dennis, and I. R. Nabi, Mol. Biol. Cell, 11(1), 255-68 (2000).   DOI
20 S. R. Carlsson and A. Simonsen, J. Cell Sci., 128(2), 193-205 (2015).   DOI
21 C. Kishi-Itakura, I. Koyama-Honda, E. Itakura, and N. Mizushima, J. Cell Sci., 127(Pt 18), 4089-102 (2014).   DOI
22 Y. Nishida, S. Arakawa, K. Fujitani, H. Yamaguchi, T. Mizuta, T. Kanaseki, M. Komatsu, K. Otsu, Y. Tsujimoto, and S. Shimizu, Nature, 461(7264), 654-8 (2009).   DOI
23 F. Guo, X. Liu, H. Cai, and W. Le, Brain Pathol., 28(1), 3-13 (2018).   DOI
24 D. B. Munafo and M. I. Colombo, J. Cell Sci., 114(Pt 20), 3619-29 (2001).
25 N. Mizushima, Nat. Cell Biol., 20(5), 521-527 (2018).   DOI
26 S. Saha, D. P. Panigrahi, S. Patil, and S. K. Bhutia, Biomed. Pharmacother., 104, 485-495 (2018).   DOI
27 B. Levine and G. Kroemer, Cell, 132(1), 27-42 (2008).   DOI
28 D. D. Martin, S. Ladha, D. E. Ehrnhoefer, and M. R. Hayden, Trends. Neurosci., 38(1), 26-35 (2015).   DOI
29 B. Khalil, N. El Fissi, A. Aouane, M. J. Cabirol-Pol, T. Rival, and J. C. Lievens, Cell. Death Dis., 6, e1617 (2015).   DOI
30 M. Arrasate and S. Finkbeiner, Exp. Neurol., 238(1), 1-11 (2012).   DOI
31 M. Renna, M. Jimenez-Sanchez, S. Sarkar, and D. C. Rubinsztein, J. Biol. Chem., 285(15), 11061-7 (2010).   DOI
32 C. G. Towers and A. Thorburn, EBioMedicine, 14, 15-23 (2016).   DOI
33 J. Nah, J. Yuan, and Y. K. Jung, Mol. Cells., 38(5), 381-9 (2015).   DOI