Browse > Article
http://dx.doi.org/10.5806/AST.2016.29.6.293

The distribution of 137Cs activities in sediment samples of South-Han River basin  

Kim, Jiyu (Water Quality Assessment Research Division, National Institute of Environmental Research)
Kang, Tae-Woo (Yeongsan-River Environment Research Center, National Institute of Environmental Research)
Hong, Jung-Ki (Water Quality Assessment Research Division, National Institute of Environmental Research)
An, Mijeong (Water Quality Assessment Research Division, National Institute of Environmental Research)
Chang, Chaewon (Water Quality Assessment Research Division, National Institute of Environmental Research)
Kim, Kyunghyun (Water Quality Assessment Research Division, National Institute of Environmental Research)
Han, Young-Un (Yeongsan-River Environment Research Center, National Institute of Environmental Research)
Kang, Taegu (Yeongsan-River Environment Research Center, National Institute of Environmental Research)
Publication Information
Analytical Science and Technology / v.29, no.6, 2016 , pp. 293-299 More about this Journal
Abstract
$^{137}Cs$ was investigated in river bottom sediments located in South-Han River basin and it was compared with international case studies to estimate the concentration level of $^{137}Cs$ in river sediment of Korea. The obtained values of $^{137}Cs$ which was analyzed by gamma-ray spectrometry were in the range of <$MDA{\sim}3.80{\pm}0.14Bq/kg{\cdot}dry$ and similar to the $^{137}Cs$ activities in soil of Korea. According to international case studies, $^{137}Cs$ activities were between 3.7 to $15,396Bq/kg{\cdot}dry$, when pollutants such as nuclear power plant accidents and radiation leaks were present near the rivers. The $^{137}Cs$ activities showed a variety of distribution depending on the country, when pollution occurs and survey time. Also, $^{137}Cs$ activities of river sediments without pollution sources were mostly less than $10Bq/kg{\cdot}dry$ in other countries. It was comparable with the obtained $^{137}Cs$ activities in this study. The obtained values provide useful information on the background concentration of $^{137}Cs$ in river sediment and will be able to use a basis for determining contamination of $^{137}Cs$ in the river.
Keywords
$^{137}Cs$; Artificial radionuclides; River sediment; Gamma-ray spectrometry;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 USEPA, 'Ionizing Radiation Fact Book', EPA-402-F-06-061, USA, 2007.
2 UNSCEAR, 'SOURCES AND EFFECTS OF IONIZING RADIATION', UNSCEAR 2000 REPORT Vol.?, New York: United Nations, 2000.
3 J. A. Corcho-Alvarado, B. Balsiger, H. Sahli, M. Astner, F. Byrde, S. Röllin, R. Holzer, N. Mosimann, S. Wüthrich, A. Jakob and M. Burger, J. Environ. Radioactiv., 160, 54-63 (2016).   DOI
4 J. Lehto and X. Hou, Radionuclides and their radiometric measurement. in: Lehto J, Hou X, ed. Chemistry and analysis of radionuclides., p1-24 Weinheim: Wiley-VCH; 2011.
5 D. Huang, J. Du, B. Deng and J. Zhang, Cont. Shelf Res., 57, 10-17 (2013).   DOI
6 K. Mori, K. Tada, Y. Tawara, K. Ohno, M. Asami, K. Kosaka and H. Tosaka, Environ. Model. Softw., 72, 126-146 (2015).   DOI
7 J. C. Ritchie and J. R. McHenry, J. Environ. Qual., 19, 215-233 (1990).
8 J. Y. Kim, H. J. Jung, M. J. An, J. K. Hong, T. G. Kang, T. W. Kang, Y. H. Cho, Y. U. Han, B. N. Seol, W. S. Kim and K. H. Kim, Anal. Sci. Technol., 28(6), 377-384 (2015).   DOI
9 ATSDR, 'Toxicological Profile For Cesium', PB2004-104397, USA, 2004.
10 M. J. Madruga, L. Silva, A. R. Gomes, A. Libanio and M. Reis, J. Environ. Radioactiv., 132, 65-72 (2014).   DOI
11 I. R. Ajayi, Res. J. Appl. Sci., 3(3), 183-188 (2008).
12 USEPA, 'Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP)', Vol. 2, EPA 402-B-04-001B, USA, 2004.
13 Y. Sanada, T. Matsunaga, N. Yanase, S. Nagao, H. Amano, H. Takada and Y. Tkachenko, Appl. Radiat. Isot., 56, 751-760 (2002).   DOI
14 Water Information System, http://water.nier.go.kr/front/waterEasy/information02.jsp.
15 J. E. Lee, J. W. Choi and K. G. An, J. the Environ. Sci., 21(9), 1115-1129 (2012).
16 M. H. Lee, H. S. Shin, K. H. Hong, Y. H. Cho and C. W. Lee, Determination of Minimum Detectable Activity in Environmental Samples, J. Radiat. Prot., 24(3), 171-184 (1999).
17 E. S. Jang, A Study on Minimum Detection Limit of Environmental Radioactivity in HPGe Detector, Korean Soc. Radiol., 5(1), 5-10 (2011).   DOI
18 KINS, 'Environmental Radioactivity Survey Data in Korea', KINS/ER-028, 2014.
19 F. Durec, M. Betti and A. Durecova, Appl. Radiat. Isot., 66, 1706-1710 (2008).   DOI
20 M. Frignani, D. Sorgente, L. Langone, S. Albertazzi and M. Ravaioli, J. Environ. Radioactiv., 71, 299-312 (2004).   DOI
21 B. S. Smith, D. P. Child, D. Fierro, J. J. Harrison, H. Heijnis, M. A. C. Hotchkis, M. P. Johansen, S. Marx, T. E. Payne and A. Zawadzki, J. Environ. Radioactiv., 151, 579-586 (2016).   DOI
22 E. Gourdin, O. Evrard, S. Huon, I. Lefevre, O. Ribolzi, J. L. Reyss, O. Sengtaheuanghoung and S. Ayrault, J. Hydrol., 519, 1811-1823 (2014).   DOI
23 A. I. Nikitin, I. I. Kryshev, N. I. Bashkirov, N. K. Valetova, G. E. Dunaev, A. I. Kabanov, I. Y. Katrich, A. O. Krutovsky, V. A. Nikitin, G. I. Petrenko, A. M. Polukhina, G. V. Selivanova and V. N. Shkuro, J. Environ. Radioactiv., 108, 15-23 (2012).   DOI
24 A. E. Khater, Y. Y. Ebaid and S. A. El-Mongy, Int. Congr. Ser., 1276, 405-406 (2005).   DOI
25 M. I. Chowdhury, M. N. Alam and S. K. S. Hazari, Appl. Radiat. Isot., 51, 747-755 (1999).   DOI
26 S. Charmasson, O. Radakovitch, M. Arnaud, P. Bouisset and A. S. Pruchon, Estuaries, 21(3), 367-378 (1998).   DOI
27 T. Kajimoto, S. Endo, T. Naganuma and K. Shizuma, Proceedings of International Symposium on Environmental monitoring and dose estimation of residents after accident of TEPCO'S Fukushima Daiichi Nuclear Power Stations, KURRI, Osaka, Japan, 2013.
28 G. Mackeviciene, N. Striupkuviene and G. Berlinskas, Ekologija, 2, 69-74 (2002).
29 T. Sawidis, D. Bellos and L. Tsikritzis, Water Air Soil Pollut., 221, 215-222 (2011).   DOI