Browse > Article
http://dx.doi.org/10.5806/AST.2016.29.1.29

Quantitative determination of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in chlorinated drinking water using sample enrichment followed by liquid-liquid extraction and GC-MS  

Kim, Hekap (Department of Environmental Science, Kangwon National University)
Song, Byeong yeol (Department of Environmental Science, Kangwon National University)
Publication Information
Analytical Science and Technology / v.29, no.1, 2016 , pp. 29-34 More about this Journal
Abstract
This study explores the means by which MX can be effectively extracted from chlorinated water 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a potent mutagen commonly found in chlorinated drinking water at concentrations of up to a few hundred ng/L, was quantitatively determined using sample enrichment followed by liquid-liquid extraction (LLE), derivatization to methylated form, and analysis with GC-MS. A 4-L water sample was enriched to a concentration of 0.4 L using a vacuum rotary evaporator at 30 ℃. MX in the water was extracted using ethyl acetate (100 mL × 2) as a solvent and MX in the extract was methylated with 10 % H2SO4 in methanol. MX was recovered at a rate of 73.8 %, which was higher than that (38.1 %) for the resin adsorption method. The limit of quantification and repeatability (as relative standard deviation) were estimated to be 10 ng/L and 2.2 %, respectively. This result suggested that LLE can be used for the determination of MX in chlorinated water as an alternative to more time-consuming resin adsorption method.
Keywords
chlorinated drinking water; GC-MS; liquid-liquid extraction; MX; sample enrichment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Planas, F. Ventura, J. Caixach, J. Martn and R. Boleda, Talanta, 144, 145-156 (2015).   DOI
2 J. Hemming, B. Holmbom, M. Reunanen and L. Kronberg, Chemosphere, 15, 549-556 (1986).   DOI
3 L. Kronberg and R. F. Christman, Sci. Total Environ., 81/82, 219-230 (1989).   DOI
4 L. Kronberg and T. Vartiainen, Mut. Res., 206, 177-182 (1988).   DOI
5 D. P. Samsonov, E. M. Pasynkova and G. V. Bornovalova, J. Anal. Chem., 57, 513-517 (2002).   DOI
6 J. M Wright, J. Schwartz, T. Vartiainen, J. Mki-Paakkanen, L. Altshul, J. J. Harrington and D. W. Dockery, Environ. Health Perspect., 110, 157-164 (2002).   DOI
7 S. W. Krasner, H. S. Weinberg, S. D. Richardson, S. J. Pastor, R. Chinn, M. J. Sclimenti, G. D. Onstand and A. D. Thurston Jr., Environ. Health Perspect., 40, 7175-7185 (2006).
8 N. Kinae, C. Sugiyama, M. Y. Nasuda, K. Goto, K. Tokumoto, M. Furugori and K. Shimoi, Water Sci. Technol., 25, 333-340 (1992).
9 Z. Huixian, X. Xu, Z. Jinqi and Z. Zhen, Chemosphere, 30, 2219-2225 (1995).   DOI
10 E.-A. Yoo and J. Won, Anal. Sci. Technol., 19, 290-300 (2006).
11 T. Vartiainen, A. Liimatainen, S. Jskelinen and P. Kauranen, Water Res., 7, 773-779 (1987).
12 J. Nawrocki, P. Andrzejewski, L. Kronberg and H. Jelen, J. Chromatogr. A, 790, 242-250 (1997).   DOI
13 J. Nawrocki, P. Andrzejewski, L. H. Jele and E. Wasowicz, Water Res., 35, 1891-1896 (2001).   DOI
14 S. D. Richardson and C. Postigo, Chapter 4, In ‘Emerging Organic Contaminants and Human Health - The Handbook of Environmental Chemistry 20’, Vol. 20, p. 93, D. Barceló, Ed., Springer-Verlag Berlin Heidelberg, Germany, 2012.
15 J. R. Meier, R. B. Knohl, W. E. Coleman, H. P. Ringhand, J. W. Munch, W. H. Kaylor, R. P. Streicher and F. Kopfler, Mut. Res., 189, 363-373 (1987).   DOI
16 A. Smeds, T. Vartiainen, J. Mki-Paakanen and L. Kronberg, Environ. Sci. Technol., 31, 1033-1039 (1997).   DOI
17 M. J. Charles, G. Chen, R. Kanniganti and D. Marbury, Environ. Sci. Technol., 26, 1030-1035 (1992).   DOI
18 A. L. Rezemini, J. M. Vaz and L. R. F. Carvalho, J. Chromatogr. A, 972, 259-267 (2002).   DOI
19 G. D. Onstad and H. S. Weinberg, Anal. Chim. Acta, 534, 281-292 (2005).   DOI