Browse > Article
http://dx.doi.org/10.5806/AST.2014.27.6.352

Determination of boron in steel by HNO3-NH4HF2 digestion and ICP-MS  

Choi, Won Myung (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Eum, Chul Hun (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Park, Ilyong (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Analytical Science and Technology / v.27, no.6, 2014 , pp. 352-356 More about this Journal
Abstract
Various studies have been done to improve the properties of the steel by adding boron to the steel. Some studies have reported on the analysis of the boron in steel by AAS (atomic absorption spectrometry), ICP-OES(inductively coupled plasma-optical emission spectrometry), ICP-MS (inductively coupled plasma/mass spectrometry). The volatile loss of boron of steel in sample digestion and the separation procedure for avoiding matrix effect by high concentration of iron are difficulties for determination of boron in steel. The method to determine boron in steel by ICP-MS was developed without volatilization of boron in sample digestion step with $HNO_3-NH_4HF_2$ digestion method, and the additional separation process for avoiding matrix effect. Complete decomposition of steel with $HNO_3-NH_4HF_2$ digestion method, and boron determination by ICP-MS in the matrix of high concentration of iron were possible. Quantitative recoveries of boron in certified standard steel by new method in this study were 103 to 111%, and the relative standard deviation is less than 5%. The method detection limit was $1.17{\mu}g/g$.
Keywords
steel; boron; ammonium bifluoride; ICP-MS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Pessard, B. Abrivard, F. Abroug and P. Delhaye, Int. J. Fatigue, 68, 80-89 (2014).   DOI   ScienceOn
2 H. Guler, R. Ozcan and N. Yaunz, Mat.-Wiss. u. Werkstofftech, 45, 894-899 (2014).   DOI   ScienceOn
3 H. Yang, X. X. Wang and J. B. Qu, J. Iron. Steel. Res. Int., 21, 787-792 (2014).   DOI
4 Z. X. Gui, W. K. Liang and Y. S. Zhang, Trans. Nonferrous Met. Soc. China, 24, 1750-1757 (2014).   DOI   ScienceOn
5 C. H. Yang and S. J. Jiang, Spectrochimi. Acta Part B, 59, 1389-1394 (2004).   DOI   ScienceOn
6 T. Shinohara, H. Matsubara, N. Yoshikuni and K. Oguma, Bunseki Kagaku, 52, 851-853 (2003).   DOI   ScienceOn
7 C. J. Park, Bull. Korean Chem. Soc., 23, 1541-1544 (2002).   DOI   ScienceOn
8 A. G. Coede, T. Dorado, B. J. Fernandez and F. J. Alguacil, Anal. Chem., 68, 991-996 (1996).   DOI   ScienceOn
9 A. Lopez Molinero and A. Ferrer, J. R. Castillo, Talanta, 40, 1397-1403 (1993).   DOI   ScienceOn
10 T. Ishikawa and E. Nakamura, Anal. Chem., 62, 2612-2616 (1990).   DOI
11 A. G. Coedo, T. Dorado, E. Escudero and I. G. Cobo, J. Anal. At. Spectrom., 8, 827-831 (1993).   DOI
12 J. S. Chen, H. Berndt, R. KlockenKamper and G. Tolg, Fresenius J. Anal. Chem., 338, 891-894 (1990).   DOI
13 D. C. Gregoire, Spectrochimi. Acta, 42B, 895-907 (1987).
14 A. A. Ammar, R. K. Gupta and R. M. Barnes, Spectrochmi. Acta Part B, 54, 1077-1084 (1999).   DOI   ScienceOn
15 Korean Standards Association KS D 1878(1965. 12. 30.), Republic of Korea.
16 Korean Standards Association KS D ISO 13900(2003. 10. 31.), Republic of Korea.
17 G. H. Fontaine, B. Hattendorf, B. Bourdon and D. Gunther, J. Anal. At. Spectrom., 24, 637-648 (2009).   DOI   ScienceOn