Browse > Article
http://dx.doi.org/10.5806/AST.2013.26.6.375

Analysis of germanium in rock and sediment by ICP/MS after ammonium bifluoride(NH4HF2) digestion  

Eum, Chul Hun (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Choi, Won Myung (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Analytical Science and Technology / v.26, no.6, 2013 , pp. 375-380 More about this Journal
Abstract
Ammonium biflouride ($NH_4HF_2$) digestion was studied for germanium analysis in rock and sediment by inductively coupled plasma mass spectrometry (ICP/MS). QLO-1 and SDO-1 are used for reference materials from USGS. Sediment, basalt and ball clay for GeoPT were chosen as real samples. The loss of germanium in open vessel digestion was well known which can be caused by easy transformation to volatile compounds. But ammonium bifluoride digestion could suppress loss of germanium in open vessel digestion. Germanium recovery was not influenced by hydrogen peroxide with ammonium bifluoride digestion. Furthermore, the new method was simple and rapid in germanium analysis by ICP/MS. MDL(method detection limit) was 0.015 ${\mu}g/g$ and germanium recovery was 106~128%.
Keywords
germanium analysis; ammonium bifluoride; rock and sediment; open vessel digestion; ICP/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Greenwood and A. Earnshaw, 'In Chemistry of the elements', Pergamon press: Oxford, U. K. (1984).
2 J. R. Castillo, J. Lanaja and J. Aznare, Analyst, 107, 89-95 (1982).   DOI
3 L. Halicz, Analyst, 110, 943-946 (1985).   DOI
4 T. Nakahara and T. Wasa, Microchem. J., 49, 202-212 (1994).   DOI   ScienceOn
5 M. Thompson, B. Pahlavanpour, S. J. Walton and G. G. Kirkbright, Analyst, 103, 705-713 (1978).   DOI
6 J. W. Hershey and P. N. Keliher, Spectrochim. Acta Part B, 41(7) 713-723 (1986).   DOI   ScienceOn
7 B. Welz and M. Melcher, Anal. Chim. Acta, 131, 17-25 (1981).   DOI   ScienceOn
8 A. D’Ulivo, L. Lampugnani and R. Zamboni, Spectrochim. Acta Part B, 47(7), 619-631 (1992).   DOI   ScienceOn
9 X. P. Yan and Z. M. Ni, Anal. Chim. Acta, 291, 89-105 (1994).   DOI   ScienceOn
10 I. D. Brindle, X. C. Le and X. F. Li, J. Anal. At. Spectrom., 4, 227-232 (1989).   DOI
11 M. Willbold, K. P. Jochum, I. Raczek, M. A. Amini, B. Stoll and A. W. Hofmann, Anal. Bioanal. Chem., 377, 117-125 (2003).   DOI
12 X. D. Cao, Y. Chen, Z. M. Gu and X. R. Wang, Intern. J. Environ. Anal. Chem., 76, 295-309 (2000).   DOI   ScienceOn
13 E. Chajduk, I. Bartosiewicz, M. Pyszynska, J. Chwastowska and H. Polkowska-Motrenko, J. Radioanal. Nucl. Chem., 295, 1913-1919 (2013).   DOI
14 R. A. Nadkarni and R. I. Botto, Appl. Spectrosc., 38, 595-598 (1984).   DOI
15 U. Husam, E. Abbasi, Ahmet and A. Eroglu, Anal. Sci., 17, 559-560 (2001).   DOI   ScienceOn
16 R. A. Davidson, D. D. Harbuck and D. D. Hammargren, Atomic Spectrosc., 11, 7-12 (1990).
17 H. S. Shin, M. S. Choi and K. J. Kim, J. Korean. Chem. Soc., 41(8), 399-405 (1997).
18 W. Zhang, Z. C. Hu, Y. S. Liu, H. H. Chen, S. Gao and R. M. Gaschnig, Anal. Chem., 84, 10686-10693 (2012).   DOI   ScienceOn
19 K. E. Jarvis and A. L. Gray, 'Handbook of inductively coupled plasma mass spectrometry', Chapman and Hall, New York, 1992.
20 S. Farias and P. Smichowski, J. Anal. At. Spectrom., 14, 809-814 (1999).   DOI   ScienceOn
21 A. N. D’yachenko and R. I. Kraidenko, Russian Journal of Applied Chemistry, 81, 952-955 (2008).   DOI
22 N. Zhe-Ming, J. Anal. At. Spectrom., 10, 747-751 (1995).   DOI
23 J. Agget and G. Boyes, Analyst, 114, 1159-1161 (1989).   DOI