Browse > Article
http://dx.doi.org/10.5806/AST.2012.25.2.114

Comparison of peptide guanidination efficiency using various reaction conditions  

Park, Su-Jin (Department of Chemistry, Chungnam National University)
Koo, Kun-Mo (KAIST)
Kim, Jin-Hee (Department of Chemistry, Chungnam National University)
Kim, Jeong-Kwon (Department of Chemistry, Chungnam National University)
Publication Information
Analytical Science and Technology / v.25, no.2, 2012 , pp. 114-120 More about this Journal
Abstract
For the qualitative analysis of peptides in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), O-methylisourea, which is chemically bound to a specific site of an amino acid (e.g. lysine) of peptides and improves the intensities of the modified peptides, is frequently used prior to the MALDI-MS analysis of peptides, where the process is called guanidination. The reaction efficiency of guanidination varies depending on the reaction conditions. We investigated the efficiencies of guanidination of tryptically digested myoglobin using three different reagents (O-methylisourea, S-methylisothiourea, and 2-methyl-2-imidazoline) at $65^{\circ}C$ for 1 h with various pH conditions (pH 4.0, 7.0, and 10.5), where O-methylisourea and pH 10.5 were found to be most effective. The guanidination with O-methylisourea at pH 10.5 were then applied with different reaction conditions such as heating, microwave and ultrasound at various times, where heating for 60 min was found to be most effective. Conclusively, guanidination with O-methylisourea at $65^{\circ}C$ for 1 h at pH 10.5 was found to be the optimized condition.
Keywords
O-methylisourea; S-methylisourea; 2-methyl-2-imidazoline; guanidination; mass spectrometry; MALDI-MS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. R. Yates, 3rd, J. Mass Spectrom., 33, 1-19 (1998).   DOI   ScienceOn
2 Q. Luo, K. Tang, F. Yang, A. Elias, Y. Shen, R. J. Moore, R. Zhao, K. K. Hixson, S. S. Rossie and R. D. Smith, J. Proteome Res., 5, 1091-1097 (2006).   DOI   ScienceOn
3 H. Han, S. Nho, A. Lee and J. Kim, B. Korean Chem. Soc., 31, 1527-1534 (2010).   DOI   ScienceOn
4 A. Lee, H. J. Yang, Y. Kim and J. Kim, B. Korean Chem. Soc., 30, 1127-1130 (2009).   DOI   ScienceOn
5 A. Lee, H. J. Yang, E. S. Lim, J. Kim and Y. Kim, Rapid Commun. Mass Spectrom., 22, 2561-2564 (2008).   DOI   ScienceOn
6 S. Laugesen and P. Roepstorff, J. Am. Soc. Mass. Spectrom, 14, 992-1002 (2003).   DOI   ScienceOn
7 A. Tholey and E. Heinzle, Anal. Bioanal. Chem., 386, 24-37 (2006).   DOI   ScienceOn
8 R. L. Beardsley and J. P. Reilly, Anal. Chem., 74, 1884- 1890 (2002).   DOI   ScienceOn
9 J. E. Hale, J. P. Butler, M. D. Knierman and G. W. Becker, Anal. Biochem., 287, 110-117 (2000).   DOI   ScienceOn
10 C. O. Kappe, Angew. Chem. Int. Ed. Engl., 43, 6250- 6284 (2004).   DOI   ScienceOn
11 M. Galesio, D. V. Vieira, R. Rial-Otero, C. Lodeiro, I. Moura and J. L. Capelo, J. Proteome Res., 7, 2097- 2106 (2008).   DOI   ScienceOn
12 H. F. Juan, S. C. Chang, H. C. Huang and S. T. Chen, Proteomics, 5, 840-842 (2005).   DOI   ScienceOn
13 S. Shin, H. J. Yang, J. Kim and J. Kim, Anal. Biochem., 414, 125-130 (2011).   DOI   ScienceOn
14 F. L. Brancia, S. G. Oliver and S. J. Gaskell, Rapid Commun. Mass Spectrom, 14, 2070-2073 (2000).   DOI   ScienceOn