Browse > Article
http://dx.doi.org/10.5806/AST.2006.19.4.301

Photocatalytic effect for the pitch-coated TiO2  

Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University)
Bae, Jang-Soon (Department of Industrial Chemistry, Dankook University)
Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
Publication Information
Analytical Science and Technology / v.19, no.4, 2006 , pp. 301-308 More about this Journal
Abstract
Pitch-coated anatase $TiO_2$ typed was prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the pitch-coated $TiO_2$ sample series showed a good adsorptivity and photo decomposition activity. The BET surface area depends on the pitch contents, which was made by changing the mixing ratios of the pitch with the raw $TiO_2$. The SEM results present to the characterization of porous texture on the pitch-coated $TiO_2$ sample and pitch distributions on the surfaces for all the materials used. From XRD data, a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the pitch-coated $TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of pitchcoated $TiO_2$ with Uv/Vis spectra between absorbance and time could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.
Keywords
porous carbon; BET surface area; SEM; XRD; EDX; photocatalytic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. F. Ollis, E. Pelizzetti, and N. Serpone, 'Photocatalysis fundamentals and applications', ed. N. Serpone and E. Pelizzetti, Wiley, New York (1989)
2 F. B. Li and X. Z. Li, Appl. Catal. A: Gen, 5910, 1 (2001)
3 S. J. Parkand K. D. Kim, J. Colloid Interface Sci., 212, 186 (1999)   DOI   ScienceOn
4 N. Negishi and K. Takewchi, Mater. Lett., 38, 150 (1999)   DOI   ScienceOn
5 K. Kinoshita, 'Carbon-electrochemical and physicochemical properties', ed. B. Warren, John Wiley, New York, (1998)
6 T. Torimoto, and Y. Okawa, N. Takeda, and H. Yoneyama, J. Photochem. Photobiol. A-Chem., 103, 153 (1997)   DOI
7 B. J. Park, S. J. Park, and S. K. Ryu, J. Colloid Interface Sci., 217, 142 (1999)   DOI   ScienceOn
8 A. K. Datye, G. Riegel, J. R. Bolton, M. Huang, and M. R. Prairie, J. Solid State Chem., 115, 236 (1995)   DOI   ScienceOn
9 D. Beydiun, H. Tse, R. Amal, G. Low, and S. McEvoy, J. Mol. Catal. A: Chem., 177, 265 (2002)   DOI   ScienceOn
10 T. Torimoto, S. Ito, S. Juwabata, and H. Yoneyama, Environ. Sci. Technol., 30, 1275 (1996)   DOI   ScienceOn
11 S. Ahuja and T. R. N. Kutty, J. Photochem. Photobiol. A-Chem., 97, 99 (1996)   DOI
12 X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 44, 325-333 (2006)   DOI   ScienceOn
13 Z. Ding, X. Hu, P. L. Yue, G. Q. Lu, and P. F. Greenfield, Catal. Today, 68, 173 (2001)   DOI   ScienceOn
14 A Fujishima and K. Honda, Nature, 238(7), 37 (1972)   DOI   ScienceOn
15 Z. Ding, G. Lu, and P. Greenfield, J. Colloid Interface Sci., 232, 1 (2000)   DOI   ScienceOn
16 J. Matos, J. Laine, and J. M. Herrmann, J. Catal., 200, 10 (2000)   DOI   ScienceOn
17 X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700-1708 (2005)   DOI   ScienceOn
18 N. Takeda, N. Iwata, T. Torimoto, and H. Yoneyama, J. Catal., 177, 240 (1998)   DOI   ScienceOn
19 M. Yoshikawa, A. Yasutaka, and I. Mochida, Appl. Catal. A: Gen., 173, 239 (1998)   DOI   ScienceOn
20 S. Nagaoka, Y. Hamasaki, S. Ishihara, M. Nafata, K. Iio, C. Nagasawa, and H. Ihara, J. Mol. Catal. A: Chem., 177, 255 (2002)   DOI   ScienceOn
21 Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, J. Solar Energy Eng., 118, 123 (1996)   DOI   ScienceOn
22 S. L. Park and J. S. Kim, Carbon, 39, 2011 (2001)   DOI   ScienceOn