Browse > Article

Qualitative Analysis of the Component Materials of Nuclear Power Plant Using Time-Resolved Laser Induced Breakdown Spectroscopy  

Chung, Kun-Ho (Nuclear Environment Research Division, Korea Atomic Energy Research Institute)
Cho, Yeong-Hyun (Nuclear Environment Research Division, Korea Atomic Energy Research Institute)
Lee, Wanno (Nuclear Environment Research Division, Korea Atomic Energy Research Institute)
Choi, Geun-Sik (Nuclear Environment Research Division, Korea Atomic Energy Research Institute)
Lee, Chang-Woo (Nuclear Environment Research Division, Korea Atomic Energy Research Institute)
Publication Information
Analytical Science and Technology / v.17, no.5, 2004 , pp. 416-422 More about this Journal
Abstract
Time-resolved laser induced breakdown spectroscopy (TRELIBS) has been developed and applied to the qualitative analysis of the component materials of nuclear power plant. The alloy samples used in this work were carbon steels (A106 Gr. B; A336 P11; A335 P22), stainless steels (type 304; type 316) and inconel alloys (Inconel 600; Inconel 690; Inconel 800). Carbon steels can be individually distinguished by the intensity ratio of chromium to iron and molybdenum to iron emission lines observed at the wavelength raging from 485 to 575 nm. Type 316 stainless steel can be easily differentiated from type 304 by identification of the molybdenum emission lines at an emission wavelength ranging from 485 to 575 nm: type 304 does not give any molybdenum emission lines, but type 316 does. The inconel alloys can be individually distinguished by the intensity ratio of Cr/Fe and Ni/Fe emission lines at the wavelength raging from 420 to 510 nm. TRELIBS has been proved to be a powerful analytical technique for direct analysis of alloys due to its non-destructivity and simplicity.
Keywords
TRELIBS; carbon steel; stainless steel; inconel alloy; nuclear power plant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Schechter, Anal. Sci. Technol., 8, 779~786(1995).
2 D. A. Cremers, L. J. Radziemski and T. R. Loree, Appl. Spectrosc., 38, 721-729(1984).
3 R. Wisbrun, I. Schechter, H. Schoeder and K. L. Kompa, Anal. Chem., 66, 2964-2975(1994).
4 L. Dudragne, Ph. Adam and J. Amouroux, Appl. Spectrosc., 52, 1321-1327(1998).
5 A. E. Pichahchy, D. A. Cremers and M. J. Ferris, Spectrochim. Acta B, 52, 25-39(1997).
6 C. M. Davis, H. H. Telle and A.W. Williams, Fresenius J. Anal. Chem., 355, 895-899(1996).
7 D.A. Cremers and L.J. Radziemski, Anal. Chem., 55, 1252-1256(1983).
8 K. Song, H. Cha, J. Lee, J.-S. Choi and Y.-I. Lee, J. Korean Phys. Sco., 30, 463-468(1997).
9 J. Sneddon and Y.-I. Lee, Anal. Lett., 32, 2143-2162(1999).
10 M. Hanafi, M.M. Omar and Y.E.E-D. Gamal, Radiation Phys. Chem., 57, 11-20(2000).   ScienceOn
11 A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans and J. Wriht, Spectrochim. Acta B, 56, 821-830(2001).
12 K. Song, Y.-I. Lee and J. Sneddon, Appl. Spectrosc. Rev., 37, 89-117(2002).
13 D. R. Anderson, C. W. McLeod, T. English and A. T. Smith, Appl. Spectrosc., 49, 691-701(1995).
14 T. L. Thiem, Y.-L. Lee and J. Senddon, Microchem. J., 45, 1-35(1992).
15 Y.-I. Lee, S. P. Sawan, T. L. Thiem, Y.-Y. Teng and J. Sneddon, Appl. Spectrosc., 46, 436-441(1992).
16 M. Martin and M.-D. Cheng, Appl. Spectrosc., 54, 1279-1285(2000).
17 T. L. Thiem, R. H. Salter, J. A. Gardner, Y.-I. Lee and J. Sneddon, Appl. Spectrosc., 48, 58-64(1992).
18 D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh and D. W. Kim, Appl. Spectrosc., 51, 22-29(1997).
19 D. W. Hahn and M. M. Lunden, Aerosol Sci. Technol., 33, 30-48(2000).
20 I. Schechter, Rev. Anal. Chem., 16, 173-298(1997).
21 D. A. Rusak, B. C. Castle, B. W. Smith and J. D. Winefordner, Crit. Rev. Anal. Chem., 27, 257-290(1997).
22 T. L. Thiem, R. H. Salter, J. A. Gardner, Y. I. Lee and J. Sneddon, Appl. Spectrosc., 48, 58-64(1994).
23 W. E. Ernst, D. F. Farson and D. J. Sames, Appl. Spectrosc., 50, 306-309 (1996).
24 L. J. Radziemski, T. R. Loree, D. A. Cremers and N. M. Hoffman, Anal. Chem., 55, 1246-1252(1983).