Browse > Article

A Study of Germanium Substrate Vacancy Clustering Formation using Monte Carlo Method  

Lee, Jun-Ha (Department of Computer System Engineering, Sangmyung University)
Publication Information
Journal of the Semiconductor & Display Technology / v.10, no.2, 2011 , pp. 45-48 More about this Journal
Abstract
In this paper, vacancy clustering formation and diffusion of germanium substrate was studied. The analysis method was adopted Monte Carlo method. At temperatures higher than melting point, fewer clusters formed, but there was less variation in the number of clusters than at lower temperatures, as the time increased. Equilibrium diffusivities in the clustering region were $10^2$ lower than those of free vacancies in the initial stage of kinetic lattice Monte Carlo simulations. They were expressed according to three temperature regimes: at temperatures above 1,100 K, at temperatures of 1,100-900 K, and at temperatures below 900 K. The effective mean migration energy, 1.1 eV, closely coincided with that of the 1.0-1.2 eV in experiments.
Keywords
Germanium Substrate; Monte Carlo Method; Vacancy Clustering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Vanhellemont, O. De Gryse, S. Hens, P. Vanmeerbeek, D. Poelman, P. Clauws, E. Simoen, C. Claeys, I. Romandic, A. Theuwis, G. Raskin, H. Vercammen, and P. Mijlemans, Grown-in lattice defects and diffusion in Czochralski-grown germanium, Defect Diffus. Forum 230-232, pp. 149-176, 2004   DOI
2 P. Spiewak, K.J. $Kurzyd^{3}owski$, J. Vanhellemont, P. Clauws, P. Wabinski, K. $M^{3}ynarczyk$, I. Romandic, and A. Theuwis, Simulation of intrinsic point defect properties and vacancy clustering during Czochralski germanium crystal growth, Mater. Sci. Semicon. Proc. 9, pp. 465-470, 2006.   DOI   ScienceOn
3 B.P. Hale, K.M. Beardmore, and M. Gronbech-Jensen, Vacancy clustering and diffusion in silicon: Kinetic lattice Monte Carlo simulations, Phys. Rev. B 74, 045217, 2006.   DOI
4 L. Pelaz, L.A. Marques, M. Aboy, and J. Barbolla, Atomistic modeling of amorphization and recrystallization in silicon, Appl. Phys. Lett. 82, pp. 2038-2040. 2003.   DOI   ScienceOn
5 J. Dai, W.D. Seider, and T. Sinno, Lattice kinetic Monte Carlo simulations of defect evolution in crystals at elevated temperature, Mol. Simulat. 32, pp. 305-314, 2006.   DOI   ScienceOn
6 P. Spiewak, M. Muzyk, K.J. $Kurzyd^{3}owski$, J. Van-hellemont, K. $M^{3}ynarczyk$, P. Wabinski, and I. Romandic, Molecular dynamics simulation of intrinsic point defects in germanium, J. Cryst. Growth 303, pp. 12-17, 2007.   DOI   ScienceOn
7 S. Hens, J. Vanhellemont, D. Poelman, P. Clauws, I. Romandic, A. Theuwis, and F. Holsteyns, J. Van Steenbergen, Experimental and theoretical evidence for vacancy-clustering-induced large voids in Czochralski-grown germanium crystals, Appl. Phys. Lett. 87, p. 061915, 2005.   DOI   ScienceOn
8 A. Chroneos, R.W. Grimes, and C. Tsamis, Atomic scale simulations of arsenic-vacancy complexes in germanium and silicon, Mater. Sci. Semicon. Proc. 9, pp. 536-540, 2006.   DOI   ScienceOn
9 Solomon Assefa, Fengnian Xia and Yurii A. Vlasov, "Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects", Nature 464, pp. 80-84, 2010   DOI   ScienceOn