DOI QR코드

DOI QR Code

Preparation of Biodegradable Thermo-responsive Polyaspartamides with N-Isopropylamine Pendent Groups (I)

  • Moon, Jong-Rok (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University)
  • Published : 2006.12.20

Abstract

Novel amphiphilic, thermo-responsive polyaspartamides which showed both LCST (lower critical solution temperature), and sol-gel transition were prepared and characterized. The polyaspartamide derivatives were synthesized from polysuccinimide, the polycondensate of aspartic acid monomer, via successive nucleophilic ring-opening reaction by using dodecylamine and N-isopropylethylenediamine (NIPEDA). At the intermediate composition ranges, the dilute aqueous solution exhibited a thermally responsive phase separation due to the presence of LCST. The phase transition temperature was controllable by changing the content of pendent groups. In addition, a physical gelation, i.e. the sol-gel transition was observed from the concentrated solutions, which was elucidated by dynamic viscoelastic measurements. These novel injectable and thermo-responsive hydrogels have potential for various biomedical applications such as tissue engineering and current drug delivery system.

Keywords

References

  1. Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29, 1173 https://doi.org/10.1016/j.progpolymsci.2004.08.003
  2. Lee, K. Y.; Mooney, D. J. Chemical Reviews 2001, 101(7), 1869 https://doi.org/10.1021/cr000108x
  3. Caliceti, P.; Quarta, S. M.; Veronese, F. M.; Cavallaro, G.; Pedone, E.; Giammona, G. Biochim. Biophys. Acta 2001, 1528, 177 https://doi.org/10.1016/S0304-4165(01)00191-X
  4. Pitaresi, G.; Pierro, P.; Giammona, G.; Iemma, F.; Muzzalupo, R.; Picci, N. Biomaterial 2004, 25, 4333 https://doi.org/10.1016/j.biomaterials.2003.11.015
  5. Castelli, F.; Messina, C.; Craparo, E. F.; Mandracchia, D.; Pitarresi, G. Drug Delivery 2005, 12, 357 https://doi.org/10.1080/10717540590968404
  6. Tachibana, Y.; Kurisawa, M.; Uyama, H.; Kakuchi, T.; Kobayashi, S. Chem. Commun. 2003, 106
  7. Kim, J. H.; Sim, S. J.; Lee, D. H.; Kim, D.; Lee, Y. K.; Kim, J.-H. J. Ind. Eng. Chem. 2004, 10(2), 278
  8. Moon, J. R.; Kim, B. S.; Kim, J.-H. Bull. Korean Chem. Soc. 2006, 27(7), 981 https://doi.org/10.5012/bkcs.2006.27.7.981
  9. Watanabe, E.; Tomoshige, N. Chem. Lett. 2005, 34(6), 876 https://doi.org/10.1246/cl.2005.876
  10. Takeuchi, Y.; Uyama, H.; Tomoshige, N.; Watanabe, E.; Tachibana, Y. J. Polym. Sci., Polym. Chem. 2006, 44, 671 https://doi.org/10.1002/pola.21189
  11. Neri, P.; Antoni, G.; Benvenuti, F.; Colola, F.; Gazzei, G. J. Med. Chem. 1972, 16, 893 https://doi.org/10.1021/jm00266a006
  12. Wolk, S. K.; Swift, G.; Paik, Y. H.; Yocom, K. M.; Smith, R. L.; Simon, E. S. Macromolecules 1994, 27, 7613 https://doi.org/10.1021/ma00104a016

Cited by

  1. Biodegradable ‘intelligent’ materials in response to physical stimuli for biomedical applications vol.19, pp.4, 2009, https://doi.org/10.1517/13543770902771282
  2. In Situ gelling and drug release behavior from novel temperature-sensitive polyaspartamides vol.19, pp.5, 2011, https://doi.org/10.1007/s13233-011-0507-7
  3. Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery vol.289, pp.1, 2011, https://doi.org/10.1007/s00396-010-2307-6
  4. Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) vol.36, pp.5, 2012, https://doi.org/10.7317/pk.2012.36.5.617
  5. Pronounced influence of pH, metal-ion and solvent isotope on the thermoresponse of synthetic amphiphilic polypeptides vol.4, pp.19, 2013, https://doi.org/10.1039/c3py00741c
  6. Nickel-based solid catalysts for ethylene oligomerization – a review vol.4, pp.8, 2014, https://doi.org/10.1039/C4CY00305E
  7. Electrospun poly(aspartic acid) gel scaffolds for artificial extracellular matrix vol.63, pp.9, 2014, https://doi.org/10.1002/pi.4720
  8. The influence of pH, hydrolysis and degree of substitution on the temperature-sensitive properties of polyaspartamides pp.09598103, 2019, https://doi.org/10.1002/pi.5699
  9. Lower critical solution temperature behavior of amphiphilic copolymers based on polyaspartamide derivatives vol.107, pp.1, 2008, https://doi.org/10.1002/app.27138
  10. Biodegradable Thermo- and pH-Responsive Hydrogels Based on Amphiphilic Poly-aspartamide Derivatives Containing N,N-Diisopropylamine Pendants vol.16, pp.6, 2006, https://doi.org/10.1007/bf03218549
  11. A pH- and thermo-responsive poly(amino acid)-based drug delivery system vol.136, pp.None, 2006, https://doi.org/10.1016/j.colsurfb.2015.09.057
  12. Stimuli-Responsive Poly(aspartamide) Derivatives and Their Applications as Drug Carriers vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168817