We introduce a piece of special-purpose equipment for responding to disasters that has a dual-arm manipulator consisting of six-axis multi joints, and a master-slave operating system controlled by a wearable joystick for intuitive and convenient operation. However, due to the complexity and diversity of a disaster environment, training and suitable training means are needed to improve the interaction between the driver and equipment. Therefore, in this paper, a system that can improve the operator's immersion in the training simulation is proposes, this system is implemented in a virtual environment. The implemented system consists of a cabin installed with the master-slave operation system, a motion platform, visual and sound systems, as well as a real-time simulation device. This whole system was completed by applying various techniques such as a statistical mapping method, inverse kinematics, and a real-time physical model. Then, the implemented system was evaluated from a point of view of the appropriateness of the mapping method, inverse kinematics, the feasibility for real-time simulations of the physical environment through some task mode.