Proceedings of the Korean Society for Agricultural Machinery Conference (한국농업기계학회:학술대회논문집)
Korean Society for Agricultural Machinery
- Semi Annual
Domain
- Agriculture, Fishery and Food > Agricultural Engineering/Facilities
2000.11c
-
An integrated grader which measures soluble solid content, color and weight of fresh apples was developed by NAMRI. The prototype grader consists of the near infrared spectroscopy and machine vision system. Image processing system and an algorithm to evaluate color were developed to speed up the color evaluation of apples. To avoid the light glare and specular reflection, an half-spherical illumination chamber was designed and fabricated to detect the color images of spherical-shaped apples more precisely. A color revision model based on neural network was developed. Near-infrared(NIR) spectroscopy system using NIR reflectance method developed by Lee et al(1998) of NAMRI was used to evaluate soluble solid content. In order to observe the performance of the grader, tests were conducted on conditions that there are 3 classes in weight sorting, 4 classes in combination of color and soluble solid content, and thus 12 classes in combined sorting. The average accuracy in weight, color and soluble solid content is more than about 90 % with the capacity of 3 fruits per second.
-
Nearinfra-red(NIR) reflectance NIR a spectra (400 to 2,100 nm) were collected on 32 beef samples to find feasibility of predicting beef tenderness. The study to predict beef tenderness was accomplished with the stepwise second differential data of the collected NIR spectra. Beef tenderness was measured by Warner-Bratzler(WB) shear force using a Universal Testing Machine(UTM). After modeling the relation between Warner-Bratzler shear force and NIR spectrum of 19 samples among the 32 beef samples, the verification was carried out through predicting the other 13 samples. The SEC and R
$^2$ values in the prediction equation were 9.07(N) and 0.6463, respectively. The SEP and R$^2$ were 14.8(N) and 0.7082 (wave length 552 nm, 1988 nm) respectively. The result implied that it was possible to predict the beef tenderness using NIR spectrum and that the tenderness could be predicted non-destructively in real time. -
A new spectroscopic method for pesticide residues detection on agricultural products was developed. The general determination methods are high performance liquid chromatography (HPLC), gas chromatography (GC) or GC-mass spectrometry. They have provided relatively good detection limit and accuracy with complicated and time-consuming (5hrs above) procedures. In addition freshness is very important for evaluating qualities of agricultural products. This requires a simple and fast method for detection of pesticides. Reflectance, transmittance and fluorescence spectrometry of pesticides were tested using UV range because most of pesticides contain conjugation band in the molecular structures. Fluorescence spectrometry showed better sensitive to detect pesticide residues than did reflectance and transmittance spectrometry. Intensity and shape of fluorescence spectra showed different patterns with different structures of pesticides. Detection limit for fluorescence spectrometry was 0.1 ppm to 10 ppm depending on the structures of pesticides. Application of fluorescence spectrometry appears to be an easy method for detection of pesticide residues on agricultural products.
-
Instrumentation and technologies are described for determining the vibration response characteristics of the pear with frequency range 5 to 320Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the pear was developed. Mechanical properties such bioyield deformation, rupture deformation and apparent elastic modulus etc. were compared with the vibration response characteristics of the pear. The resonant frequency of the pear ranged from 53 to 102Hz and the amplitude at resonance was between 1.08 and 2.48g-rms. The resonant frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.
-
The objective of this research was to study the effect of contact force of ultrasonic probe on the ultrasonic attenuation measurement of radish. The relationship between ultrasonic attenuation (y) and contact force (x) for radish can be expressed as equation y=a+bLn(x), where a=8.7194+2.l68x(porosity) and b =-9.9188+0.0075
${\times}$ (volume). The relationship between ultrasonic power spectrum (y) and contact force (x) for radish is also represented by equation y=a+bLn(x), where a= 60.l965-1.47l4${\times}$ (porosity). The coefficient b has no significant relation with radish properties. -
An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images, 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc., so that a total of seven images, that is, one color image from the top side of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filter image and the other is 970nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results to the Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defective and shape were 95.3%, 86% and 91%, respectively. Grading time was 0.35 sec per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.
-
The aims of this research were to investigate the preprocessing effect of spectrum data on prediction performance and to develop a robust model to predict SSC in intact apple. Spectrum data of 320 Fuji apples were measured with the on-line transmittance measurement system at the wavelength range of 550∼1100nm. Preprocess methods adopted for the tests were Savitzky Golay, MSC, SNV, first derivative and OSC. Several combinations of those methods were applied to the raw spectrum data set to investigate the relative effect of each method on the performance of the calibration model. PLS method was used to regress the preprocessed data set and the SSCs of samples, and the cross-validation was to select the optimal number of PLS factors. Smoothing and scattering corection were essential in increasing the prediction performance of PLS regression model and the OSC contributed to reduction of the number of PLS factors. The first derivative resulted in unfavorable effect on the prediction performance. MSC and SNV showed similar effect. A robust calibration model could be developed by the preprocessing combination of Savitzky Golay smoothing, MSC and OSC, which resulted in SEP= 0.507, bias=0.032 and R
$^2$ =0.8823. -
The position of tobacco leaves is affluence to the quality. To evaluate its quality, sample leaves was collected according to the position of attachment. In Korea, the position was divided into four classes such as high, middle, low and inside positioned leaves. Until now, the grade of standard sample was determined by human expert from korea ginseng and tobacco company. Many research were done by the chemical and spectrum analysis using NIR and computer vision. The grade of tobacco leaves mainly classified into 5 grades according to the attached position and its chemical composition. In high and low positioned leaves shows a low level grade under grade 3. Generally, inside and medium positioned leaf has a high level grade. This is the basic research to develop a real time tobacco leaves grading system combined with portable NIR spectrum analysis system. However, this research just deals with position recognition and grading using the color machine vision. The RGB color information was converted to HSI image format and the sample was all investigated using the bundle of tobacco leaves. Quality grade and position recognition was performed through well known general error back propagation neural network. Finally, the relationship about attached leaf position and its grade was analyzed.
-
Geometrical characteristics of fresh red pepper(Capsicum annuum L.) were measured and indexed to define some important geometrical characteristics, and malformation of body and fruit stalk which are necessary for the design of the equipments for cutting, spreading and alignment of red pepper in developing a fruit stalk remover of fresh red pepper. The effects of bending of body and fruit stalk on the equipments of cutting, spreading and alignment were studied. The maximum lengths of some parts of fresh red pepper were found to be 180 mm, 125 mm, 144 mm, 67 mm and 76 mm for the body, the bent part of body, the fruit stalk, the bent part and the straight part of fruit stalk, respectively. The fresh red pepper with bending indices more than 0.4 and 0.3 for the body and the fruit stalk, respectively, was defined to be malformed based on the result of cutting rate using cutting unit; while the other ones to be normal in shape. Based on this, among the total fresh red peppers tested, 47%, 40% and 20% were found malformed for the body, the fruit stalk, and for both of the body and the fruit stalk. Malformed red peppers were poorer in spreading and alignment than normal ones, and the processed quantity was decreased with increased feed rate. The required time for the malformed peppers to pass on the alignment plate inclined at 30 increased rapidly at 8.3 Hz with increased feed rate. For the fresh red peppers with average moisture content of 85%,w.b., the maximum tensile strength between fruit stalk and body was 88.1 N; the maximum cutting resistances were 92.1 N and 94.9 N for the fruit stalk-calyx joint and body, respectively. Average coefficients of static friction were 0.99, 0.62, 0.59 and OJ, respectively, for the surfaces of rubber, galvanized iron, acryl and plywood.
-
There is currently no satisfactory way to optimize supplemental lighting in a greenhouse-type plant factory especially concerning plant production. In a commercial plant factory, we got outside radiation data, inside radiation data and lamp running data. They have a correlation, but have much disorder. By using regression, tendency between the outside and the inside including supplemental lighting was found. We could estimate the average transmittance of this plant factory. From this estimation, we could admit the amount of inside radiation was supplied as much supplied compared to natural radiation. Then we are trying to investigate of the production amount and the supplemental lighting. Plant factory is environmentally controlled, the temperature and humidity are not actually controlled stable. We propose a design of neural network model could be useful to estimate the profit resulting from the operation of supplemental lighting.
-
Accurate quantification of plant physiological properties is often necessary for optimal control of an automated greenhouse production system. Conventional crop growth monitoring systems are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system was used to accomplish rapid and accurate measurements of physiological-property changes of water-stressed crops. Thermal images were obtained from several species of plants that were placed in a growth chamber. Analyzing the images provided the pattern of temperature changes in a leaf and the amount of differences in the temperature of stressed plants and non-stressed plants.
-
The effect of clinostatting and microgravity on plant cells and organs is considered for two types of gravistimulation: static and dynamic. The former is eliminated by both clinostatting and microgravity; the latter is eliminated by microgravity, but is inevitable during clinostatting, and may be perceived by cells if rotation is not fast enough. To test the effect of clinostatting on root cells and development, lettuce seedlings were germinated and grown for two weeks in a spacetron, keeping the centrifugation rate at zero. In the clinorotated plants, amyloplasts were distributed throughout the cells and were not sedimented as in the stationary control. Cells of seedlings grown in a spacetron have significantly different ultrastructures from those grown under control conditions of 1g.
-
Microprecision agriculture for a fully controlled plant factory is proposed in this paper. Microprecision agriculture can be attained by using plant factories to realize profitable alternative agriculture. A closed, fully controlled, plant-growing factory is far better in terms of minimizing all sorts of waste. The limit and optimum design concept has to be applied to establish an economically feasible, fully controlled, plant-growing factory. To achieve this objective, microprecision technologies have to be developed. Microprecision technologies should be involved in sensing, modeling, controlling, and collecting information for the mechatronics for plant production. Basic technologies for microprecision are already available; they are SPA (speaking plant approach to environmental control), AI (artificial intelligence: expert systems, neural networks, genetic algorithms, photosynthetic algorithms etc.), bioinstrumentation, non-invasive measurement, biomechatronics, and biorobotics. A microprecision irrigation system for plug production is an example of a microprecision technology that has actually been implemented in a plug seedling production factory.
-
Watering operation for oyster mushroom growing houses is regarded as drudgery and time consuming farm operation for growers. Most of mushroom growing beds in oyster mushroom growing houses are designed as two-row with four floor beds, therefore the watering and ventilation between the bed floors are much difficult for farmers because of its structural design. The study aimed to reduce the watering operation and improve the mushroom growing environment through the humidification and air supply on mushroom growing beds. Results showed that appropriate size of nozzle is between 0.8~0.5ml/s for the humidification and higher than the 2.0ml/s for the watering. The optimum water supply pressure was regarded as between 1.0~2.0MPa and the uniform distribution of droplet on the bed showed on air flow speed of 14m/s. The prototype was equipped with twin nozzle with. the humidification nozzle of 0.85ml/s and watering nozzle of 5.0ml/s, and the air blast fan with the air speed of 10m/sec in each air spout. In the field test in a practical scale mushroom growing house, it was well operated dependant on the set desire by a electric control unit. The machine can be practically used as air blast watering and air blast humidification for oyster mushroom growing farms without manual.
-
Advanced Life Support Systems (ALSS) are being studied to support human life during long-duration space missions. ALSS can be categorized into four subsystems: Crew, Biomass Production, Food Processing and Nutrition, Waste Processing and Resource Recovery. The System Studies and Modeling (SSM) team of New Jersey-NASA Specialized Center of Research and Training (NJ-NSCORT) has facilitated and conducted analyses of ALSS to address systems level issues. The underlying concept of the SSM work is to enable the effective utilization of information to aid in planning, analysis, design, management, and operation of ALSS and their components. Analytical tools and computer models for ALSS analyses have been developed and implemented for value-added information processing. The results of analyses have been delivered through the Internet for effective communication within the advanced life support (ALS) community. Several modeling paradigms have been explored by developing tools for use in systems analysis. They include object-oriented approach for top-level models, procedural approach for process-level models, and application of commercially available modeling tools such as MATLAB
$\^$ (R)//Simulink$\^$ (R)/. Every paradigm has its particular applicability for the purpose of modeling work. An overview is presented of the systems studies and modeling work conducted by the NJ-NSCORT SSM team in its efforts to provide systems analysis capabilities to the ALS community. The experience gained and the analytical tools developed from this work can be extended to solving problems encountered in general agriculture. -
This paper represents the characteristics of evapotranspiration rate (EVTR) and graft-taking of watermelon grafted seedlings in a graft-taking enhancement system using fluorescent lamps as artificial lighting source. Four air temperature levels of 23, 25, 27 and 29C, three humidity levels of 85, 90 and 95%R.H. and two photosynthetic photon flux (PPF) levels of 30 and 50
${\mu}$ mol m$\^$ -2/ S$\^$ -1/ were provided to investigate the effects of air temperature, relative humidity and light intensity on EVTR and graft-taking of grafted seedlings. EVTR of grafted seedlings increased with increasing air temperature and the passage of time after grafting. Also EVTR increased with decreasing relative humidity. As relative humidity decreased and air temperature increased, vapor pressure deficit increased and thus EVTR increased. It is required to maintain a low level vapor pressure deficit for suppressing EVTR of grafted seedlings during first 1-2 days after grafting. Therefore, less EVTR at initial stage after grafting would be adequate for smooth joining of the scion and rootstock. -
Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes,
${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of$330{\times}330{\times}900mm$ , a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is$1.5m^2$ , calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to$690{\ell}$ /hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to$100^{circ}C$ from$270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to$38^{circ}C$ from$21^{circ}C$ at the water flow rate of$690{\ell}$ /hr. And, the condensed water amount varies from 16 to$43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater. -
In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of
$-7^{circ}C$ in heating mode. -
Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes,
${\emptyset}15.88{\times}600mm$ located in the rectangular box of$600{\times}550{\times}330mm$ , a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to$-12^{circ}C$ respectively when air flow rate$1,100\textrm{m}^3/hr$ . The exhaust gas temperature left the heat exchanger dropped to$100^{circ}C$ from$270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about$60^{circ}C$ at the air flow rate of$1,100\textrm{m}^3/hr$ . This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis. -
Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure,
$(length)^{-1}$ and$(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high. -
The purpose of the study is development and investigation about basic performance of the system operation on a dual fueled cogeneration system(CGS), which is operated with biogas and gas oil. As often seen in dual fueled CGS performance, the electric generating efficiency was obtained about 26□. Methane contained in the biogas could not bum completely at lower load, and it was discharged into exhaust gas. Considerable amount of the methane burned in the exhaust pipe, and the heat recovery ratio was 42□ on heat balance. As a result, the total heat efficiency, which is a summation of generating efficiency and heat recovery efficiency reached to about 70□. The supply of biogas into the engine reduces smoke density and NOx concentration in exhaust gas. At lower load, methane burned slowly and large portion of it was discharged without burning. Therefore the measures are desirable that promotes combustion of methane at lower load.
-
For high quality storage of agricultural products, temperature, humidity and gas conditions in a storage house should be controlled properly. But most of the low temperature storage house is depending on temperature control. This study aimed to develop an automatic control system for low temperature storage house that can control storage conditions such as temperature, humidity and
$CO_2$ gas concentration. The developed system alarms the user, by telephone or beeper, when abnormal condition has occurred. The farmer can also monitor the inside condition of warehouse in his residence, by Internet. From the results of the performance test, the temperature and relative humidity in the warehouse is controlled within the range of${\pm}0.5^{circ}C$ and${\pm}2%$ , respectively. -
In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem, automatic leveling control system for a combine has been developed and tested. The system was composed of the sensor for measuring left and right inclination of the combine chassis and the hydraulic control system. The adaptability of the control system was investigated by analyzing system response in time domain. And the limit angle of the leveling control was set up to be +/- 7
$^{\circ}$ . The proposed control and hydraulic power system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with chassis and track. This paper shows results of the leveling performance tested in the laboratory and the grain field. -
The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.
-
It is very difficult to mechanize tomato harvesting because identifying a tomato partly covered with leaves and stalks is not easy. This research was conducted to develop tomato harvesting robot which can identify a target tomato, determine its three dimensional position, and harvest it in a limited time. Followings were major findings in this study. The first visual system of the harvesting robot was composed of two CCD cameras, however, this could not detect tomatoes which are not seen on the view finder of the camera especially those partly covered by leaves or stalks. The second visual device, combined with two CCD cameras and pan/tilt procedures was designed to minimize the positioning errors within
${\pm}10mm$ , but this is still not enough to detect tomatoes partly covered with leaves etc. Finally, laser distance detector was added to the visual system that could reduce the position detecting errors within 10mm in X-Y direction and 5mm in Z direction for the partly covered tomatoes. -
For self-guiding track-type orchard sprayer, a low-cost steering controller was developed using two ultrasonic sensors, two DC motors and 80196kc microprocessor. The operating principle of controller was to travel the sprayer between artificial targets such as wood stick placed every 1 m along both sides of the demanded path of speed sprayer. Measuring distances to both targets ahead with the ultrasonic sensors mounted on the front end of sprayer, the controller could determine how much offset the position of sprayer was laterally. Then the steering angle was calculated to actuate DC motors connected to the steering clutches, where the fuzzy control algorithm was used. Equipped with the controller developed in this research, the sprayer could be traveled along demanded path, the centerline between targets, at speeds of up to 0.4m/sec with an accuracy of
${\pm}$ 20cm. -
In this research, rule and neuro net based boundary extraction algorithm was developed. Extracting boundary of the interest, lean tissue, is essential for the quality evaluation of the beef based on color machine vision. Major quality features of the beef are size, marveling state of the lean tissue, color of the fat, and thickness of back fat. To evaluate the beef quality, extracting of loin parts from the sectional image of beef rib is crucial and the first step. Since its boundary is not clear and very difficult to trace, neural network model was developed to isolate loin parts from the entire image input. At the stage of training network, normalized color image data was used. Model reference of boundary was determined by binary feature extraction algorithm using R(red) channel. And 100 sub-images(selected from maximum extended boundary rectangle 11
${\times}$ 11 masks) were used as training data set. Each mask has information on the curvature of boundary. The basic rule in boundary extraction is the adaptation of the known curvature of the boundary. The structured model reference and neural net based boundary extraction algorithm was developed and implemented to the beef image and results were analyzed. -
This study of field control machine in the recycled vinyl rail is gantry crane type and promoting agricultural automatization through self-controlled spraying, harvesting and conveyance. In addition to, that control machine could get a cost and labor reduction effect through automatization and make better environment by preventing farmers from agrichemical damage, accidents and recycling wasted vinyl. That machine is able to be divided as traveling, spraying, harvesting and conveyance sections. In driving section consists of girder frame, carrier, rail, control system, driving system, working machine, rail and loading device for working machine. This machine has following advantages to be able to bring a big innovation in the agricultural industry. I) Accurate performance is able to be done by proper positioning due to based on the rails. 2) The soil is not made hard like heavy tractor 3) The wheel is not sank into the soil and slipped well under rain like heavy tractor. Therefore, weather and soil situation could not affect working condition. 4) Complete unmanned control and 24hours-working are available due to traveling on the rails. 5) It could use various energy resources like not only liquid fuel but also solar, common electronic power due to traveling on the rails.
-
Moisture loss of fresh fruits and vegetables is a main cause of deterioration. It resulted not only in the direct quantitative loss, but also in change in appearance, texture and nutrition. To reduce the loss of moisture content during the distribution in the market, fresh products are packaged using plastic films. But, most of the fresh products are packaged manually in Korea. In order to minimize the labor requirement, the packaging machine for fruits and vegetables was developed and tested. Prototype was composed of film feeding unit, bag former, products feeding conveyor, film feeding roller, center sealer, end sealer and discharge conveyor. Green peppers, carrots and perilla leaves were tested with prototype. Prototype could pack 1780, 1390, 1780 bags per hour at the feeding speed of 0.08m/s respectively and 2250, 1810, 2640bags per hour at the feeding speed of 0.10m/s respectively. And packaging speed of green peppers and carrots was improved by 3.7 and 3.4 times compared with manual packaging. The packaging condition with the prototype was good and the products had almost no damages.
-
This paper represents our efforts to diagnose environmental stresses using physiological instruments in cucumber plants. The stresses could be detected by measuring and analyzing the difference of chlorophyll content, photosynthetic efficiency(Fv/Fm), differential temperature(DT), stomatal resistance and light absorbance values between treated and controlled plants. From the all over experiments, the stresses could be first diagnosed on the 1st to 5th day after treatment and the overall diagnosis rate was estimated at more than 50%.
-
The characteristics of
$CO_2$ exchange between plant and human modules, absorption rate of NO$_2$ , and growth of lettuce were examined in an urban-type plant factory(UPF). With 150 lettuce plants,$CO_2$ concentrations of plant module were 600 ~ 700$\mu$ mol mol$^{-1}$ at average leaf weight of 130g.plant$^{-1}$ and 900~1100$\mu$ mol.mol$^{-1}$ at 75g.plant$^{-1}$ for one and two persons' stay in the human module, respectively. When the air of 0.13, 0.30 and 0.45$\mu$ molㆍmol$^{-1}$ NO$_2$ in a human module was circulated ON/OFF 10/20min between the human and plant modules,$NO_2$ decrement in the chamber during 10 min was 0.040, 0.109, and 0.149$\mu$ mol, respectively. The lettuces grown at 0.45$\mu$ molㆍmol$^{-1}$ $NO_2$ during experimental period showed no significant differences in growth factors such as leaf width, leaf length, leaf area and fresh weigh, and in the quality between treated and control. -
Chemical application, one of the most important crop management processes happened to cause spray drift, that would threaten farmers in field as well as dwellers in rural region. Spray drift was affected by micro-meteorological parameters. In Korea, a boom sprayer was introduced but good effects of a boom sprayer was not evaluated. A study to evaluate short distance drift characteristics of a boom sprayer in paddy fields has been undergoing and determining wind characteristics in paddy field was the main purpose of this paper. Micro-meteorological information has been pre-requisite information for evaluating drift in both long and short distances or in both theoretical and experimental ways. Wind velocity, Reynolds stresses, turbulence intensity, skewness, kurtosis etc. were evaluated with height from the ground using a 2-dimensional probe and a hot wire anemometer system.
-
It is fundamental to control individual condition of every seedling. Automatic individual control is used by data control and analysis at on-line. As a result the best condition system was build without all waste. This system uses one of new technology irrigation system. This irrigation system supply accurate quantity of nutrient solution in the shortest time. The system named the upward injection irrigation system. First of all it is necessary to be considered whether the soil is proper or improper for upward injection irrigation system. It is important that root absorb nutrient solution as fast as possible. The ability of spreading, storing water, contamination of environment and cost were considered when choose the medium. The soil of organic culture is developed recently. The soil consists of paper pulp and vermiculite. The new soil is more suitable than ordinary medium for growing plant because this medium is made of paper pulp. The ability of store and spread of water is it's feature. We can make paper tray of this paper pulp's raw material. It is possible that pulp tray replaced plastic tray. The original plug tray of growing seedling system can make which consist of pulp medium and pulp tray. In this study, it was examined whether the plug seedling of paper pulp medium grow with upward injection irrigation system in this seedling plant system. At the same time, examine ability of store and spread of water and how to grow plant on the paper pulp medium.
-
A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.
-
This paper represents our efforts to diagnose nutrient stresses using physiological instruments in cucumber plants. The stresses could be detected by measuring and analyzing the difference of chlorophyll content, photosynthetic efficiency(Fv/Fm), differential temperature(DT), stomatal resistance and light absorbance values between deficient and controlled plants. From the all over experiments, the stresses could be first diagnosed in the 8th day after treatment and the overall diagnosis rate was estimated at more than 50%.
-
Composting by negative aeration is a reasonable proposition to control odor generated during composting process. Cattle manure and rice hulls mixtures were composted in a bin composting system by negative aeration. Continuous(CA) and intermittent(IA) aeration methods were applied to analyze the composting characteristics. The composting temperature and the ammonia emission during composting were investigated according to the aeration methods. The main problem for the negative aeration was the generation of condensate in the suction line of blower. The quantity of condensate was significant for continuous aeration. The aeration method should be modified to escape from the cooling effect of continuous aeration at the initial stage of composting. It took a longer time to finish a composting for intermittent aeration on account of lower aeration. It was concluded that the composting by negative aeration could be accomplished by either continuous or intermittent aeration method if the flow rate would be controlled more efficiently and the water vapor in suction line of blower could be removed effectively. Ammonia emission increased up to maximum value of 675ppm for continuous aeration while 300ppm for intermittent aeration. However, the cumulative value of ammonia emission was larger for intermittent aeration than for continuous aeration.
-
To improve the uniformity of slurry spreading and to reduce the odor problem, a hose slurry spreader was developed, which spread the slurry near to the surface of the soil. First, the uniformity of slurry spreading was investigated. The best result of 8.1 % CV was obtained at the rotor speed of 250 rpm than any other speeds for the swine slurry, which contains 13.6% of dry matter. In case of dairy cattle slurry, which contains 8.2% of dry matter, the uniformity has the best result of CV 7.2% by high rotor speed of 330 rpm. A high speed of rotor has built a sufficient pressure in the distributor and discharged a uniform quantity of slurry through the hoses. Therefore, in practical use one should work with rotor speed over 300 rpm to maximize the uniformity of slurry spreading. Second, odor test was done with the swine slurry. While the conventional spreader shows ∑ value 440, the hose slurry spreader and its combination of disk harrow show ∑ value 258 and 184 respectively. With the air dilution sensual test and a 3-point odor bag, the conventional spreader shows 66.9 or 35.4 point and by the hose slurry spreader is 9.7 or 11.1 point. So, the developed spreader was found to have a greater effect on the reduction of odor problem. Finally, it is recommended to spread certain amount of the slurry for paddy field equivalent to the chemical fertilizer based on the N-content. It means 22 tons of swine slurry per ha. Since most of the livestock farms possess less arable land, a system of linking farms is necessary to utilize the slurry crossover the farms. The cost of slurry utilization including filling, transport spreading and brokerage is 3200-6800 Won/㎥ in accordance with the transport distance.
-
The coagulation of Chinese cabbage juice can be accomplished by applying the combine method of the formic acid with rate of 3% and in four hours the propionic acid with rate of 1 % in the juice. The separation of coagulation into the protein paste and the brown juice completed in 6.5 hours by set up method in special storage. The protein paste can be stored safely for 30 days in anaerobic condition.
-
Red pepper powder is produced from dried red pepper through milling process with roller mill. Traditional Roller mill is convenient for crushing wax and fiber parts in red pepper. However, some metallics are produced by the friction of two rollers when it operates without feeding of red peppers. In order to reduce this metallic problems created in the roller mill in the process of red pepper, a new roller mill mechanism which enables two roller to apart when red pepper is not fed between two rollers was introduced. Adjustment of clearance between two rollers was able to conducted by the current difference between idling and crushing process. Two types of roller surface, grove and flat, and two different roller mills, cast iron and Ti coating, are tested and compared in this experiment.
-
Agricultural chemicals spraying is one of the most efficient methods for pesticides control. General farming groups use Speed Sprayer but its deposition amount on practical crops is only 20% of total amount in SS case. Agricultural chemicals which fail to arrive the crops not only cause environmental contamination but loss of agriculture chemicals by lower deposition efficiency. For the purpose of improvement of these problems, this experiment proposes SS attachment type electrostatic induction spraying apparatus with DC power which improves deposition efficiency of agriculture chemicals on the crops.
-
This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.
-
A granular herbicide applicator attached to conventional ride-on rice transplanter with 6 rows was developed in order to carry out both transplanting and herbicide application at once. It resulted in labor saving by 98%. The prototype is composed of a metering device and a spinning disc spreader. The application rate per 10a can be varied from 1 to 3 kg and the application swath is 1.8 m, which is the planting width of the ride-on rice transplanter with 6 rows. The angular speed of spinning disc and the application height were used as design factors to obtain the uniform distribution of herbicide granules. As the result of experiment, the distribution uniformity showed a tendency to be proportional to the increases of both spinner angular speed and application height. The prototype with angular speed of spinning disc of 7359 rpm and the application height of 20 cm was made and its distribution uniformity was relatively uniform with the CV(coefficient of variation) of 21.7%. In field test, when the tested herbicides such as ACl40+Stomp and Londax+YRC were applied, the weed control has continued for 65 days since transplanting was done.