Proceedings of the Korean Society for Applied Microbiology Conference (한국미생물생명공학회:학술대회논문집)
The Korean Society for Microbiology and Biotechnology
- 기타
Domain
- Life Science > Genetics/Genetic Engineering
2004.06a
-
Kang, Hyun-Ah;Oh, Yun-Wi;Oh, Kwan-Seok;Kwon, Oh-Suk;Yong Kyung, Kim;Hur, Cheol-Goo;Gerd Gellissen;Rhee, Sang-Ki 56
-
Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted
-
-
-
-
-
-
Morita, Hidetoshi;Masaoka, Toshio;Horikawa, Hiroshi;Oshima, Kenshiro;Suzuki, Takehito;Murakami, Masaru;Kato, Yukio;Hisamatsu, Shin;Takizawa, Tatsuya;Kanemaki, Nobuyuki;Saito, Yasuhide;Naito, Hitoyuki;Kishikawa, Seigou;Nishita, Toshiho;Fukuyama, Masafumi;Sakata, Ryoichi;Arishima, Kazuyoshi;Kiuchi, Akio;Wada, Tomonori;Fukuoka, Hideo;Shino, Masao;Chinone, Shiro;Shiba, Tadayoshi;Yoshimura, Tetsuhiko;Hattori, Masahira 127
-
-
-
-
-
-
-
-
-
-
-
This paper covers the basic principles of the AFM and how these systems may be used to image biological materials and measure particle-surface interactions in process environments. e.g. visualize molecules and structure on surfaces in aqueous environments, measure forces of interaction of proteins and DNA, biosurface and cells. Examples of work include applications biological spore control agents control systems, process materials selection for example appropriate filters for biological processing, mechanical properties and bio-surface engineering.
-
-
-
-
-
Dextrans make up a class of polysaccharides that are D-glucans of various structures with contiguous
$\alpha$ -1longrightarrow6 ~6 glycosidic linkages in the main chains and$\alpha$ -1longrightarrow2,$\alpha$ -1longrightarrow3, or$\alpha$ -1longrightarrow4 branch glycosidic linkages, depending on the specificity of the particular dextransucrase. Glucansucrases that catalyze glucans synthesis from sucrose. When other carbohydrates, in addition to sucrose, are present in the enzyme digest, the enzyme transfers glucose to the carbohydrate acceptors in the secondary reaction that diverts some of the glucose from incorporation into glucan. Many carbohydrate acceptors have been recognized and the products that result are dependent on the particular enzyme and the structure of the particular acceptor. Because of these unique catalytic characteristics, various dextransucrases have many important industrial and medical uses. To improve the understanding of their action mode and extend their applications, this study describes mechanism of glucan synthesis and potential industrial uses of dextransucrases, and our recent findings on the structural, functional organization and directed evolution of the glucansucrases to offer for designing glucansucrases with improved properties. -
-
-
Joe, Min-Ho;Mun, Hyo-Young;Hong, Mi-Ju;Kim, Seong-Jun;Park, Young-Hoon;Rhee, Sang-Ki;Kwon, Oh-Suk 236
In Escherichia coli, L-lysine biosynthetic pathway is composed of nine enzymatic reactions. It has been well established that most of the lysine biosynthetic genes are regulated by the lysine availability, even though they are all scattered around the chromosome without forming any multigenic operon structure. However, no transcriptional regulatory mechanism has been identified except for the activation of lysA gene by the LysR. In this study, changes in transcriptome profiles of wild type cells and lysR deletion mutant cells grown in the absence or presence of lysine were investigated by using DNA microarray technique. Microarray data analysis revealed three groups of genes whose expression varies depending on the availability of lysine or LysR or both. To further examine the regulatory patterns of lysine biosynthetic genes, lacZ operon fusions were constructed and their expression was measured under various conditions. Obtained results strongly suggest that there is an additional regulatory mechanism which senses the lysine availability and coordinates gene expression. -
-
-
Oh, Tae-Jeong;Jung, Il-Lae;Woo, Sook-Kyung;Kim, Myung-Soon;Lee, Sun-Woo;Kim, Keun-Ha;Kim, In-Gyu;An, Sung-Whan 258
Numerous genes of Escherichia coli have been shown to growth phase-dependent expression throughout growth. The global patterns of growth phase-dependent gene expression of E. coli throughout growth using oligonucleotide microarrays containing a nearly complete set of 4,289 annotated open reading frames. To determine the change of gene expression throughout growth, we compared RNAs taken from timecourses with common reference RNA, which is combined with equal amount of RNA pooled from each time point. The hierarchical clustering of the conditions in accordance with timecourse expression revealed that growth phases were clustered into four classes, consistent with known physiological growth status. We analyzed the differences of expression levels at genome level in both exponential and stationary growth phase cultures. Statistical analysis showed that 213 genes are shown to, growth phase-dependent expression. We also analyzed the expression of 256 known operons and 208 regulatory genes. To assess the global impact of RpoS, we identified 193 genes coregulated with rpoS and their expression levels were examined in the isogenic rpoS mutant. The results revealed that 99 of 193 were novel RpoS-dependent stationary phase-induced genes and the majority of those are functionally unknown. Our data provide that global changes and adjustments of gene expression are coordinately regulated by growth transition in E. coli. -
-
-
$\alpha$ -L-Arabinofuranosidase ($\alpha$ -L-AFase, EC 3.2.1.55) was isolated from hyperthermophilic microorganism, Thermotoga maritima. The open reading frame (ORF) of$\alpha$ -L-AFase gene is 1,455 bp long and encodes 484 amino acid residues with a molecular weight of 55,265 Da. The ORF of$\alpha$ -L-AFase gene was introduced into the E. coli expression vector,$_ p/RSET-B, and overexpressed in E. coli BL21. The purified recombinant$\alpha$ -L-AFase showed the highest activity at 10$0^{\circ}C$ and pH 5.5. The purified enzyme appeared to have no metal cofactor requirement. The Km and specific activity values of the recombinant enzyme were 0.99 mM and 1,200 U/mg on p-nitrophenyl-$\alpha$ -L-arabinofuranoside. It released only L-arabinose from sugar beet arabinan, sugar beet debranched arabinan and oat spelts arabinoxylan but had no activity onarabinogalactan and gum arabic. This result suggests that L-arabinose could be produced from natural polysaccharides using this enzyme. Mutant enzymes which Glu26, Glu172 and Glu281 residues were replaced to alanine, aspartic acid or glutamine caused Kcat to decrease by a factor of between 10$^3$ and 10$^4$ . Glu172 and Glu281 residues of$\alpha$ -L-AFase are seemed to be the acid/base and nucleophile in catalytic reaction, respectively, and Glu26 is supposed to playa key role in substrate binding.ng. -
The
$\alpha$ 1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro$\alpha$ 1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first$\alpha$ 1,6-mannose residue on the core glycan Man$_{8}$ GlcNAc$_2$ . The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$ GlcNAc$_2$ , by overexpression of the Aspergillus saitoi$\alpha$ 1,2-mannosidase with the 'HDEL” ER retention signal.gnal. -
-
-
-
The purpose of the present study was to investigate the anti-proliferative and apoptotic effects of MCS-C2, a novel analogue of toyocamycin and sangivamycin, in human promyelocytic leukemia (HL-60) cells. When treated with MCS-C2, inhibited proliferation associated with cell cycle arrest and apoptotic induction was found in the HL-60 cells in a concentration-dependent and time-dependent manner. This apoptotic induction was associated with the cleavage of Bid and a release of cytochrome c from mitochondria into the cytosol, followed by the activation of caspase-3 and inactivation of poly (ADP-ribose) polymerase (PARP). However, there was no significant change in any other mitochondrial membrane proteins, such as Bcl-2 and Bax. Consequently, the current findings suggest that the mitochondrial pathway was primarily involved in the MCS-C2-induced apoptosis in the human promyelocytic leukemia HL-60 cells.
-
-
Leuconostoc citreum CBUE isolated from kimchi proved to harbor a small cryptic plasmid, pNS75. The complete nucleotide sequence of pNS75 was 1,821 bp and had a low G+C content of 39.2%. Computer analysis using DNASIS revealed one open reading frame (ORF), having ATG as putatitive start condon and potentially encoding proteins with molecular mass of 38 kDa. The chimeric plasmid pLeuCM was first constructed wih pNS75, pUC19 and chroamphenicol acetyltransferase (CAT) from Staphylococcus sp.. pLeuCM replicated and expressed chroamphenicol acetyltransferase in Leuconostoc citerum CBNF after transformation. To test the availability of shuttle vector as cloning vehicle of foreign gene,
$\alpha$ -amylase gene of Streptococcus bovis was cloned and all transformants secreated the$\alpha$ -amylase successfully. The result indicates that pLeuCM is a potential shuttle vector for Leuconostoc spp. and lactic acid bacteria. -