Since the iron balance is maintained by regulated intestinal absorption rather than regulated excretion, there have been many reports concerning the factors which may influence the intestinal iron absorption. As the liver is the largest iron storage organ of the body, any hepatocellular damage may result in disturbances in iron metabolism, e,g., frequent co-existence of hemochromatosis and liver cirrhosis, or elevated serum iron level and increased iron absorption rate in patients with infectious hepatitis or cirrhosis. In one effort to demonstrate the influence of hepatocellular damage on intestinal iron absortion, the iron absorption rate was measured in the rabbits whose livers were injured by a single subcutaneous injection of carbon tetrachloride (doses ranging from 0.15 to 0.5cc per kg of body weight) or by a single irradiation of 2,000 to 16,000 rads with $^{60}Co$ on the liver locally. A single oral dose of $1{\mu}Ci\;of\;^{59}Fe$-citrate with 0.5mg of ferrous citrate was fed in the fasting state, 24 hours after hepatic damage had been induced, without any reducing or chelating agents, and stool was collected for one week thereafter. Serum iron levels, together with conventional liver function tests, were measured at 24, 48, 72, 120 and 168 hours after liver damage had been induced. All animals were sacrificed upon the completing of the one week's test period and tissue specimens were prepared for H-E and Gomori's iron stain. Following are the results. 1. Normal iron absorption rate of the rabbit was $41.72{\pm}3.61%$ when 0.5mg of iron was given in the fasting state, as measured by subtracting the amount recovered in stool collected for 7 days from the amount given. The test period of 7 days is adequate, for only 1% of the iron given was excreted thereafter. 2. The intestinal iron absorption rate and serum iron level were significantly increased when the animal was poisoned by a single subcutaneous injection of 0.15cc. per kg. of body weight of carbon tetrachloride or more, or the liver was irradiated with a single dose of 12,000 rads or more. The results of liver function tests which were done simultaneously remained within normal limit except SGOT and SGPT which were somewhat increased. 3. In each case, there has been good correlation between the extent of liver cell damage and degree of increased iron absorption rate or serum iron level. 4. The method of liver damage appeared to make no obvious difference in the pattern of iron deposit in liver. This may be partly due to the fact that tissue specimens were obtained too late, for by this time the elevated serum iron level had returned within normal range and the pathological changes were almost healed. 5. The possible factors and relationship between intestinal iron absorption and hepatic parenchymal cell damage has been discussed.