The solubility and dissolution rate of naproxen (NPX) complexed with 2-hydroxypropyl-.betha.-cyc-lodextrin (2-HP.betha.CD) using coprecipitation, evaporation, freeze-drying and kneading method were investigated. Solubility of NPX linearly increased (correlation cefficient, 0.995) as $2-HP\betaCD$ concentraction increased, resutling in $A_l$ type phase solubility curve. Inclusion complexes prepared by four different methods were compared by different methods were compared by dfferential scanning calorimetry(DSC). The NPX showed sharp endothemic peak around $156^{\circ}C$ but inclusion complexes by evaporation, freeze-drying and kneading method showed very broad peak without distinct phase transtion temperature. In contrast, inclusion complex prepared by coprecipitation method resulted in detectable peak around $156^{\circ}C$ which is similar to NPX, suggesting incoplete formation of indusion co plex. Dissolution rate of inclusion complexes prepared by evaporation, frezz-drying and kneding except coprecipitation method was largely enhanced in the simultaed gastric and intestinal fluid when compared to NPX powder and commercial $NA-XEN^\registered$tablet. However, about 65% of NPX in gstric fluid. in case of inclusion complex prepared by coprecipitation method, formation of inclusion complex appeared to be incoplete, resulting in no marked enhancement of dissolution rate. From these findings, inclusion complexes of poorly water-soluble NPX with $2-HP\betaCD$ were useful to increase soubility and dissolution rate, resting in enhancement of bioavailability and minimization of gastrointestinal toxicity of drug upon oral administration of inclusion complex.