Journal of Crop Science and Biotechnology
The Korean Society of Crop Science (KSCS)
- 연5회간
- /
- 1975-9479(pISSN)
- /
- 2005-8276(eISSN)
Domain
- Agriculture, Fishery and Food > Science of Food and Crops
Aim & Scope
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.
http://link.springer.com/journal/12892 KSCI KCI SCOPUSVolume 10 Issue 4
-
Soybean [Glycine max(L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates(palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increased from 23 to > 55%, and linolenic acid reduced from 8 to < 3%. Reduced palmitic acid(16:0) is conditioned by three or more recessive alleles at the Fap locus. QTLs for reduced palmitic acid have mapped to linkage groups(LGs) A1, A2, B2, H, J, and L. Genes at the Fad locus control oleic acid content(18:1). Six QTLs(
$R^2$ =4-25%) for increased 18:1 in N00-3350(50 to 60% 18:1) explained four to 25% of the phenotypic variation. M23, a Japanese mutant line with 40 to 50% 18:1 is controlled by a single recessive gene, ol. A candidate gene for FAD2-1A can be used in marker-assisted breeding for high 18:1 from M23. Low linolenic acid(18:3) is desirable in soy oil to reduce hydrogenation and trans-fat accumulation. Three independent recessive genes affecting omega-3 fatty acid desaturase enzyme activity are responsible for the lower 18:3 content in soybeans. Linolenic acid can be reduced from 8 to about 4, 2, and 1% from copies of one, two, or three genes, respectively. Using a candidate gene approach perfect markers for three microsomal omega-3 desaturase genes have been characterized and can readily be used in for marker assisted selection in breeding for low 18:3. -
Selection of the appropriate parents to be used in artificial crosses is one of the main decisions faced by plant breeders that will facilitate the exploitation of maximum genetic variability and production of superior recombinant genotypes. Several techniques have been used in aiding the identification of genotypes with promising and desirable agronomical traits for hybridization. In this way, the objective of the present review is to gather available information for the selection of parents based on different breeding designs and analytical tools showing their similarities and highlighting the main advantages and disadvantages of their use.
-
Vitellaria paradoxa commonly called shea is an important agro forestry and fruit-bearing species present in four agro-ecological zones of Cameroon. The goal of this work was the morphological characterization of certain populations of V. paradoxa which will serve as a necessary step for a subsequent genetic study of the species. Morphological observations related to 20 agronomic traits, studied on 8-13 trees selected from each of the eight shea populations across four different agro-ecological zones located in four provinces of Cameroon were studied. The study showed that there was a variation between the populations, related to the traits measured on the trunk, fruit, nut, and leaf. Three shapes of the tree(ball, broom, and trained), five shapes of the fruit(round, oblong, reversed pear, ovoid, and oblong), three colors of the nut(clear brown, dark brown, and blackish brown) were identified. The principal component analysis(PCA) carried out on the quantitative characters revealed 72% of the total variance expressed on the first and second main axis. This variation was essentially explained by the traits measured on the fruits and on the nuts. The analyses showed that only the traits of the fruits and the nuts were discriminative. The shea populations studied were structured into two distinct groups using these discriminative traits.
-
Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by
$GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein. -
Genome duplication(i.e. polyploidy) is a common phenomenon in the evolution of plants. The objective of this study was to achieve a comprehensive understanding of genome duplication for SNP discovery by Thymine/Adenine(TA) cloning for confirmation. Primer pairs were designed from 793 EST contigs expressed in the roots of a supernodulating soybean mutant and screened between 'Pureunkong' and 'Jinpumkong 2' by direct sequencing. Almost 27% of the primer sets were failed to obtain sequence data due to multiple bands on agarose gel or poor quality sequence data from a single band. TA cloning was able to identify duplicate genes and the paralogous sequences were coincident with the nonspecific peaks in direct sequencing. Our study confirmed that heterogeneous products by the co-amplification of a gene family member were the main cause of obtaining multiple bands or poor quality sequence data in direct sequencing. Counts of amplified bands on agarose gel and peaks of sequencing trace suggested that almost 27% of nonrepetitive soybean sequences were present in as many as four copies with an average of 2.33 duplications per segment. Copy numbers would be underestimated because of the presence of long intron between primer binding sites or mutation on priming site. Also, the copy numbers were not accurately estimated due to deletion or tandem duplication in the entire soybean genome.
-
Rice is a facultative short-day plant that flowers in response to reduced day lengths. This study was conducted to identify quantitative trait loci(QTL) for the early heading date(EHD) using H143 line showing extreme EHD compared to other regular cultivars in rice. The japonica H143 was crossed with a japonica cultivar 'Dongjinbyeo' as well as a tongil cultivar 'Milyang23' to measure the inheritance mode of EHD and identify major QTL conferring EHD, respectively. Pooling test revealed that segregation distortion occurred on chromosome 7 and subsequent linkage map was constructed using 10 SSR markers. QTL analysis using Q-gene 3.06 revealed that the EHD trait in H143 was largely controlled by two major QTL, EH7-1 and EH7-2, accounting for more than 40% of genetic variation that were closely related to the previously reported QTL, Hd4 and Hd2, respectively. This result suggests that these two QTL markers may be a useful source for the control of heading date in rice breeding programs.
-
A study was conducted to observe the variation and inheritance of agronomic traits and their interrelationship in mungbean. The objective of the study was to compare agronomic traits and hardseed percentage of 268 recombinant inbred lines(RILs) developed from the cross between wild Vigna subspecies sublobata "ACC 41" with the mungbean cultivar "Berken". The RIL population and their parents were evaluated under controlled conditions in a glass house at the University of Queensland, Brisbane, Australia. The results showed significant differences among the RILs and among the parents in all traits under study. Berken had a longer flowering date and a higher seed weight per plant, but less total leaf number and pod number per plant than ACC 41. A germination test between papers revealed that ACC 41 was 100% hard-seeded and did not germinate at all, while Berken germinated up to 100%. Their RILs distributed well between 0 to 100% hardseed. Upon scarification, all hardseed germinated within seven days. Narrowsense heritability estimates of total leave number, hardseedness, pod length, and pod width were highly heritable at 89.9, 98.9, 93.7, and 93.2%, respectively. The heritability of seed weight per plant and number of seeds per plant were lower at 63.1 and 58.4%, respectively. Seed weight per plant showed positive transgressive segregation when compared with ACC 41 and a positive correlation with 100 seed weight. While the number of seeds per pod showed a negative transgressive segregation when compared with Berken and a negative correlation with pod length and pod width. The RILs gave a 1:1 segregation ratio in leaflet shape, growth habit, and growth pattern, indicating that these traits were controlled by a single dominant gene.
-
Rice is one of the world's staple crops and is a major source of carbohydrate. Rice is exported from several countries, providing a major source of income. There are many documents reporting that rice is a salt-sensitive crop in its developmental stages. The objective of this investigation is to evaluate the effective salt-tolerance defense mechanisms in aromatic rice varieties. Pathumthani 1(PT1), Jasmine(KDML105), and Homjan(HJ) aromatic rice varieties were chosen as plant materials. Rice seedlings photoautotrophically grown in-vitro were treated with 0, 85, 171, 256, 342, and 427 mM NaCl in the media. Data, including sodium ion
$(Na^+)$ and potassium ion$(K^+)$ accumulation, osmolarity, chlorophyll pigment concentration, and the fresh and dry weights of seedlings were collected after salt-treatment for 5 days.$Na^+$ in salt-stressed seedlings gradually accumulated, while$K^+$ decreased, especially in the 342-427 mM NaCl salt treatments. The$Na^+$ accumulation in both salt-stressed root and leaf tissues was positively related to osmolarity, leading to chlorophyll degradation. In the case of the different rice varieties, the results showed that the HJ variety was identified as being salt-tolerant, maintaining root and shoot osmolarities as well as pigment stabilization when exposed to salt stress or$Na^+$ enrichment in the cells. On the other hand, PT1 and KDML105 varieties were classified as salt-sensitive, determined by chlorophyll degradation using Hierarchical cluster analysis. In conclusion, the HJ-salt tolerant variety should be further utilized as a parental line or genetic resource in breeding programs because of the osmoregulation defensive response to salt-stress. -
Cho, Young-Chan;Kwon, Soon-Wook;Choi, Im-Soo;Lee, Sang-Kyu;Jeon, Jong-Seong;Oh, Myung-Kyu;Roh, Jae-Hwan;Hwang, Hung-Goo;Yang, Sae-June;Kim, Yeon-Gyu 265
The 13 major blast resistance(R) genes against Magnaporthe grisea were screened in a number of Korean rice varieties using molecular markers. Of the 98 rice varieties tested, 28 were found to contain the Pia gene originating from Japanese japonica rice genotypes. The Pib gene from BL1 and BL7 was incorporated into 39 Korean japonica varieties, whereas this same gene from the IRRI-bred indica varieties was detected in all Tongil-type varieties. We also found that 17 of the japonica varieties contained the Pii gene. The Pii gene in Korean rice varieties originates from the Korean japonica variety Nongbaeg, and Japanese japonica varieties Hitomebore, Inabawase, and Todorokiwase. The Pi5 gene, which clusters with Pii on chromosome 9, was identified only in Taebaeg. Thirty-four varieties were found to contain alleles of the resistance gene Pita or Pita-2. The Pita gene in japonica varieties was found to be inherited from the Japanese japonica genotype Shimokita, and the Pita-2 gene was from Fuji280 and Sadominori. Seventeen japonica and one Tongil-type varieties contained the Piz gene, which in the japonica varieties originates from Fukuhikari and 54BC-68. The Piz-t gene contained in three Tongil-type varieties was derived from IRRI-bred indica rice varieties. The Pi9(t) gene locus that is present in Korean japonica and Tongil-type varieties was not inherited from the original Pi9 gene from wild rice Oryza minuta. The Pik-multiple allele genes Pik, Pik-m, and Pik-p were identified in 24 of the varieties tested. In addition, the Pit gene inherited from the indica rice K59 strain was not found in any of the Korean japonica or Tongil-type varieties tested. -
Pepper fruit anthracnose, caused by Colletotrichum acutatum, results in serious yield loss and affects crop quality in many Asian countries, making it a disease of economic consequence. A source resistant to C. acutatum was identified by the AVRDC within the line Capsicum chinense Jacq. PBC932. The resistant breeding line C. annuum AR is the
$BC_3F_6$ generation derived from C. chinense Jacq. PBC932. The inheritance of resistance to C. acutatum was analyzed in segregating populations derived from the two crosses HN 11$\times$ AR and Daepoong-cho$\times$ AR. Detached mature green fruits were inoculated using microinjection method. The disease response was evaluated as the disease incidence at 7 DAI. The segregation ratios of resistance and susceptibility to C. acutatum in the$F_2$ and$BC_R$ populations derived from the two crosses fit significantly to a 1:3 Mendelian model. This indicates that the resistance of AR to C. acutatum is controlled by a single recessive gene. -
Hwang, Sun-Joo;Hamayun, Muhammad;Kim, Ho-Youn;Na, Chae-In;Kim, Kil-Ung;Shin, Dong-Hyun;Kim, Sang-Yeol;Lee, In-Jung 281
Gibberellins are growth hormones that play a pivotal role in the growth and development of plants. Present investigations were carried to check the effect of nitrogen(N) and silicon(Si) on bioactive$GA_1$ and its immediate precursor$GA_{20}$ at different growth stages of two rice cultivars with different maturity traits. It was observed that the endogenous bioactive$GA_1$ level gradually increased during vegetative stage and anthesis stage of both Junghwabyeo(early flowering cultivar) and Daesanbyeo(late flowering cultivar). However, the$GA_1$ and$GA_{20}$ content start decreasing during the seed filling stage in both rice cultivars, which indicated a possible relationship of bioactive$GA_1$ and floral development. Our results also confirmed that early 13-hydroxylation pathway was operated at all developmental stages of rice plant. Variation in the levels of the endogenous gibberellins in rice shoots were measured by GCMS-SIM using$^2H_2$ -labeled gibberellins as internal standards. Combined application of N and Si enhanced growth parameters and reduced lodging index of both rice cultivars. It was thus concluded that the level of physiologically active$GA_1$ increased during vegetative and early reproductive stage, but starts declining at seed filling stage.