DOI QR코드

DOI QR Code

양자기술용 가시광 및 근적외선 대역 고성능 파장 가변 레이저 기술 동향

Trends in High-Performance Wavelength-Tunable Lasers for Quantum Technologies in Visible and Near-Infrared Bands

  • 최병석 (양자통신연구실) ;
  • 김성일 (광융합부품연구실 ) ;
  • 김현수 (광융합부품연구실 ) ;
  • 손정권 (옵토웰 ) ;
  • 유종범 (나노종합기술원 ) ;
  • 이동춘 (포벨 )
  • B.S. Choi ;
  • S.I. Kim ;
  • H.S. Kim ;
  • J.K. Son ;
  • J.B. You ;
  • D.C. Lee
  • 발행 : 2024.10.01

초록

Quantum information technology is driving innovative computing, communication, and sensing advancements. High-performance tunable lasers have become essential tools for precisely controlling and manipulating qubits. These lasers provide high stability and accuracy at specific wavelengths, enabling efficient control of various types of qubit systems, such as ions, neutral atoms, and defects. High-performance tunable lasers allow the initialization of qubit states, execution of quantum gate operations, and minimization of errors during the readout process. In addition, tunable lasers are critical in precisely regulating the interactions between multiple qubits to optimize quantum entanglement and correlation. This study explores the existing and state-of-the-art technologies related to the design and implementation of high-performance tunable lasers in the visible and near-infrared wavelength ranges that are crucial for key material systems used in quantum technology. Based on this investigation, we present new methodologies for maximizing the scalability of qubit control. These laser technologies are expected to contribute to the commercialization and performance enhancement of quantum information technology, a common foundational technology.

키워드

과제정보

본고는 과학기술정보통신부의 재원으로 연구재단 및 정보통신기회평가원의 지원을 받아 수행된 연구임[24JS3210, 양자 기술용 반도체 레이저 다이오드 광원 및 모듈 개발, 2019-0-00005, 근거리 저속 이동형 양자암호통신을 위한 편광기반 무선 양자키분배 송수신부 집적화 모듈 기술 개발, 2020-0-00890, QKD 프로토콜 간 상호 운용성 확보를 위한 신뢰 노드 코어 및 인터페이스 개발, 2022-0-01014, 경량형 무선 양자 중계 플랫폼 기술 개발, 2022-0-01014, 위성 양자 보안 통신을 위한 30km급 장거리 무선 양자 암호키 분배 전송 기술 및 위성 양자 암호키 분배(QKD) 핵심 요소기술개발].

참고문헌

  1. L. Robledo et al., "High-fidelity projective read-out of a solid-state spin quantum register," Nature, vol. 477, 2011, pp. 574-578. 
  2. M. Pompili et al., "Realization of a multinode quantum network of remote solid-state qubits," Sci., vol. 372, 2021, pp. 259-264. 
  3. M. Corato-Zanarella et al., "Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet near-infrared wavelengths," Nature Photon., 2023. 
  4. P. Zorabedian, "Axial-mode instability in tunable external-cavity semiconductor lasers," IEEE J. Quantum Electron., vol. 30, no. 7, 1994, pp. 1542-1552. 
  5. W. Rideout et al., "Ultra-low reflectivity semiconductor optical amplifiers without antireflection coating," 용어해설 Electron. Lett., vol. 26, no. 1, 1990, pp. 36-38. 
  6. P.J.S. Heim et al., "Single-angled-facet laser diode for widely tunable external cavity semiconductor lasers with high spectral purity," Electron. Lett. vol. 33, no. 16, 1997, pp. 1387-1389. 
  7. https://www.toptica.com/products/tunable-diode-lasers 
  8. C. Franken et al., "Hybrid-integrated diode laser in the visible spectral range," Opt. Lett. vol. 46, no. 19, 2021, pp. 4904-4907. 
  9. L. Winkler et al., "Widely tunable and narrow-linewidth hybrid-integrated diode laser at 637nm," Opt. Exp., vol. 32, no. 17, 2024, pp. 29710-29720. 
  10. M. Peters et al., "High efficiency, high reliability laser diodes at JDS Uniphase," SPIE, 2005, pp. 142-151. 
  11. P. Crump et al., "Efficient high-power laser diodes," IEEE J. Slected. Topic. Quantum Electron., vol. 19, no. 4, 2013, p. 1501211. 
  12. C. Xiang, "Silicon Nitride passive and active photonic integrated circuits: trends and prospects," Photonics Research, vol. 10, no. 6, 2022. 
  13. H. Mahmudlu et al., "Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation," Nature Photon., vol. 17, 2023, pp. 518-524. 
  14. B. Li et al., "Reaching fiber-laser coherence in integrated photonics," Opt. Lett., vol. 46, no. 20, 2021. 
  15. Y. Fan et al., "Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth," Opt. Exp., vol. 28, no. 15, 2020. 
  16. B. Liu et al., "Wide tunable double ring resonator coupled lasers," IEEE Photon. Technol. Lett., vol. 14, no. 5, 2002. 
  17. Y. Guo et al., "Hybrid integrated external cavity laser with a 172-nm tuning range," APL Photon., vol. 7, 2022. 
  18. B.-S. Choi et al., "10-Gb/s direct modulation of polymer-based tunable external cavity lasers," Opt. Exp., vol. 20, no. 18, pp. 20368-20375, Apr. 2012. 
  19. B.-S. Choi et al., "Evaluation of chirp reduction in polymer-based tunable external-cavity lasers," IEEE J. Quantum Electron. 51, 2015, p. 2000315. 
  20. B.-S. Choi et al., "Simple detuning method for low-chirp operation in polymer-based tunable external-cavity lasers," Opt. Exp., vol. 23, no. 24, pp. 30657- 30666, 2012. 
  21. L. Labont et al., "Integrated photonics for quantum communications and metrology," PRX Quantum vol. 5, 2024, p. 010101. 
  22. R. Katsumi et al., "Transferprinted single-photon sources coupled to wire waveguides," Optica, vol. 5, no. 6, 2018, pp. 691-694.