DOI QR코드

DOI QR Code

Performance analysis of atomic magnetometer and bandwidth-extended loop antenna in resonant phase-modulated magnetic field communication system

  • Hyun Joon Lee (Radio Research Division, Electronics and Telecommunications Research Institute) ;
  • Jung Hoon Oh (Radio Research Division, Electronics and Telecommunications Research Institute) ;
  • Jang-Yeol Kim (Radio Research Division, Electronics and Telecommunications Research Institute) ;
  • In-Kui Cho (Radio Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2023.04.18
  • Accepted : 2023.08.15
  • Published : 2024.08.20

Abstract

Telecommunications through an electrically conductive medium require the use of carrier bands with very-low and ultralow frequencies to establish radiofrequency links in harsh environments. Recent advances in atomic magnetometers operating at very-low frequencies have facilitated the reception of digitally modulated signals. We demonstrate the transmission and reception of quadrature phase-shift keying (QPSK) signals using a multi-resonant loop antenna and atomic magnetometer, respectively. We report the measured error vector magnitude according to the symbol rate for QPSK modulation and analyze the bandwidth of a receiver based on the atomic magnetometer. The multi-resonant loop antenna noticeably enhances the bandwidth by over 70% compared with a single-loop antenna. QPSK modulation for a carrier frequency of 20 kHz and symbol rate of 150 symbols per second verifies the feasibility of demodulation, and the measured error vector magnitude and signal-to-noise ratio are 7.29% and 30.9 dB, respectively.

Keywords

References

  1. C. J. Berglund, L. R. Hunter, D. Krause, Jr, E. O. Prigge, M. S. Ronfeldt, and S. K. Lamoreaux, New limits on local Lorentz invariance from Hg and Cs magnetometers, Phys. Rev. Lett. 75 (1995), 1879-1882.  https://doi.org/10.1103/PhysRevLett.75.1879
  2. D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser, Phys. Rev. Lett. 85 (2000), 5038-5041.  https://doi.org/10.1103/PhysRevLett.85.5038
  3. M. N. Nabighian, V. J. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W. Peirce, J. D. Phillips, and M. E. Ruder, The historical development of the magnetic method in exploration, Geophysics 70 (2005), 33ND-61ND. 
  4. V. Mathe, F. Leveque, P.-E. Mathe, C. Chevallier, and Y. Pons, Soil anomaly mapping using a cesium magnetometer: limits in the low magnetic amplitude case, J. Appl. Geophys. 58 (2006), 202-217.  https://doi.org/10.1016/j.jappgeo.2005.06.004
  5. S. K. Lee, M. Mossle, W. Myers, N. Kelso, A. H. Trabesinger, A. Pines, and J. Clarke, SQUID-detected MRI at 132 μT with T1-weighted contrast established at 10 μT-300 mT, Magn. Reson. Med. 53 (2005), 9-14.  https://doi.org/10.1002/mrm.20316
  6. S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT, Magn. Reson. Med. 67 (2012), 1138-1145.  https://doi.org/10.1002/mrm.24177
  7. H. J. Lee, S. J. Lee, J. H. Shim, H. S. Moon, and K. Kim, In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer, J. Magn. Reson. 300 (2019), 149-152.  https://doi.org/10.1016/j.jmr.2019.02.001
  8. I. Hilschenz, S. Oh, S. J. Lee, K. K. Yu, S. M. Hwang, K. Kim, and J. H. Shim, Dynamic nuclear polarisation of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI, J. Magn. Reson. 305 (2019), 138-145.  https://doi.org/10.1016/j.jmr.2019.06.013
  9. S. J. Lee, K. Jeong, J. H. Shim, H. J. Lee, S. Min, H. Chae, S. K. Namgoong, and K. Kim, SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange, Sci. Rep. 9 (2019), 12422. 
  10. I. F. Akyildiz, P. Wang, and Z. Sun, Realizing underwater communication through magnetic induction, IEEE Commun. Mag. 53 (2015), 42-48.  https://doi.org/10.1109/MCOM.2015.7321970
  11. A. Pal and K. Kant, NFMI: near field magnetic induction based communication, Comput. Netw. 181 (2020), 107548. 
  12. J. Lee, H. J. Lee, J. Y. Kim, and I. K. Cho, Gaped two-loop antenna-based magnetic transceiver with an empirical model for wireless underground communication, IEEE Access 9 (2021), 34962-34974.  https://doi.org/10.1109/ACCESS.2021.3062148
  13. J. Y. Kim, H. J. Lee, J. H. Lee, J. H. Oh, and I. K. Cho, Experimental assessment of a magnetic induction-based receiver for magnetic communication, IEEE Access 10 (2022), 110076-110087.  https://doi.org/10.1109/ACCESS.2022.3214507
  14. J. Y. Kim, I. K. Cho, H. J. Lee, J. Lee, J. I. Moon, S. M. Kim, S. W. Kim, S. Ahn, and K. Kim, A novel experimental approach to the applicability of high-sensitivity giant magneto-impedance sensors in magnetic field communication, IEEE Access 8 (2020), 193091-193101.  https://doi.org/10.1109/ACCESS.2020.3032702
  15. V. Gerginov, F. C. S. da Silva, and D. Howe, Prospects for magnetic field communications and location using quantum sensors, Rev. Sci. Instrum. 88 (2017), 125005. 
  16. S. J. Ingleby, I. C. Chalmers, T. E. Dyer, P. F. Griffin, and E. Riis, Resonant very low- and ultra low frequency digital signal reception using a portable atomic magnetometer, arXiv Preprint, (2020). 
  17. V. Gerginov, Field-polarization sensitivity in RF atomic magnetometers, Phys. Rev. Appl. 11 (2019), 024008. 
  18. I. Fan, S. Knappe, and V. Gerginov, Magnetic communication by polarization helicity modulation using atomic magnetometers, Rev. Sci. Instrum. 93 (2022), 053004.
  19. M. Tahir, I. Ali, P. Yan, M. R. Jafri, J. Zexin, and D. Xiaoqiang, Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data, ETRI J. 42 (2020), 575-584.  https://doi.org/10.4218/etrij.2018-0492
  20. T. E. Abrudan, O. Kypris, N. Trigoni, and A. Markham, Impact of rocks and minerals on underground magneto-inductive communication and localization, IEEE Access 4 (2016), 3999-4010.  https://doi.org/10.1109/ACCESS.2016.2597641
  21. I. M. Savukov, S. J. Seltzer, and M. V. Romalis, Detection of NMR signals with a radio-frequency atomic magnetometer, J. Magn. Reson. 185 (2007), 214-220.  https://doi.org/10.1016/j.jmr.2006.12.012
  22. D. A. Keder, D. W. Prescott, A. W. Conovaloff, and K. L. Sauer, An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity, AIP Adv. 4 (2014), 127159. 
  23. I. Savukov, T. Karaulanov, and M. G. Boshier, Ultra-sensitive high-density Rb-87 radio-frequency magnetometer, Appl. Phys. Lett. 104 (2014), 023504. 
  24. C. Deans, L. Marmugi, and F. Renzoni, Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments, Rev. Sci. Instrum. 89 (2018), 083111. 
  25. H. Yao, B. Maddox, and F. Renzoni, High-sensitivity operation of an unshielded single cell radio-frequency atomic magnetometer, Opt. Express 30 (2022), 42015-42025.  https://doi.org/10.1364/OE.476016
  26. IEEE Standard for Information Technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Standard 802.11ac, 2013.