References
- C. J. Berglund, L. R. Hunter, D. Krause, Jr, E. O. Prigge, M. S. Ronfeldt, and S. K. Lamoreaux, New limits on local Lorentz invariance from Hg and Cs magnetometers, Phys. Rev. Lett. 75 (1995), 1879-1882. https://doi.org/10.1103/PhysRevLett.75.1879
- D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser, Phys. Rev. Lett. 85 (2000), 5038-5041. https://doi.org/10.1103/PhysRevLett.85.5038
- M. N. Nabighian, V. J. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W. Peirce, J. D. Phillips, and M. E. Ruder, The historical development of the magnetic method in exploration, Geophysics 70 (2005), 33ND-61ND.
- V. Mathe, F. Leveque, P.-E. Mathe, C. Chevallier, and Y. Pons, Soil anomaly mapping using a cesium magnetometer: limits in the low magnetic amplitude case, J. Appl. Geophys. 58 (2006), 202-217. https://doi.org/10.1016/j.jappgeo.2005.06.004
- S. K. Lee, M. Mossle, W. Myers, N. Kelso, A. H. Trabesinger, A. Pines, and J. Clarke, SQUID-detected MRI at 132 μT with T1-weighted contrast established at 10 μT-300 mT, Magn. Reson. Med. 53 (2005), 9-14. https://doi.org/10.1002/mrm.20316
- S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT, Magn. Reson. Med. 67 (2012), 1138-1145. https://doi.org/10.1002/mrm.24177
- H. J. Lee, S. J. Lee, J. H. Shim, H. S. Moon, and K. Kim, In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer, J. Magn. Reson. 300 (2019), 149-152. https://doi.org/10.1016/j.jmr.2019.02.001
- I. Hilschenz, S. Oh, S. J. Lee, K. K. Yu, S. M. Hwang, K. Kim, and J. H. Shim, Dynamic nuclear polarisation of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI, J. Magn. Reson. 305 (2019), 138-145. https://doi.org/10.1016/j.jmr.2019.06.013
- S. J. Lee, K. Jeong, J. H. Shim, H. J. Lee, S. Min, H. Chae, S. K. Namgoong, and K. Kim, SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange, Sci. Rep. 9 (2019), 12422.
- I. F. Akyildiz, P. Wang, and Z. Sun, Realizing underwater communication through magnetic induction, IEEE Commun. Mag. 53 (2015), 42-48. https://doi.org/10.1109/MCOM.2015.7321970
- A. Pal and K. Kant, NFMI: near field magnetic induction based communication, Comput. Netw. 181 (2020), 107548.
- J. Lee, H. J. Lee, J. Y. Kim, and I. K. Cho, Gaped two-loop antenna-based magnetic transceiver with an empirical model for wireless underground communication, IEEE Access 9 (2021), 34962-34974. https://doi.org/10.1109/ACCESS.2021.3062148
- J. Y. Kim, H. J. Lee, J. H. Lee, J. H. Oh, and I. K. Cho, Experimental assessment of a magnetic induction-based receiver for magnetic communication, IEEE Access 10 (2022), 110076-110087. https://doi.org/10.1109/ACCESS.2022.3214507
- J. Y. Kim, I. K. Cho, H. J. Lee, J. Lee, J. I. Moon, S. M. Kim, S. W. Kim, S. Ahn, and K. Kim, A novel experimental approach to the applicability of high-sensitivity giant magneto-impedance sensors in magnetic field communication, IEEE Access 8 (2020), 193091-193101. https://doi.org/10.1109/ACCESS.2020.3032702
- V. Gerginov, F. C. S. da Silva, and D. Howe, Prospects for magnetic field communications and location using quantum sensors, Rev. Sci. Instrum. 88 (2017), 125005.
- S. J. Ingleby, I. C. Chalmers, T. E. Dyer, P. F. Griffin, and E. Riis, Resonant very low- and ultra low frequency digital signal reception using a portable atomic magnetometer, arXiv Preprint, (2020).
- V. Gerginov, Field-polarization sensitivity in RF atomic magnetometers, Phys. Rev. Appl. 11 (2019), 024008.
- I. Fan, S. Knappe, and V. Gerginov, Magnetic communication by polarization helicity modulation using atomic magnetometers, Rev. Sci. Instrum. 93 (2022), 053004.
- M. Tahir, I. Ali, P. Yan, M. R. Jafri, J. Zexin, and D. Xiaoqiang, Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data, ETRI J. 42 (2020), 575-584. https://doi.org/10.4218/etrij.2018-0492
- T. E. Abrudan, O. Kypris, N. Trigoni, and A. Markham, Impact of rocks and minerals on underground magneto-inductive communication and localization, IEEE Access 4 (2016), 3999-4010. https://doi.org/10.1109/ACCESS.2016.2597641
- I. M. Savukov, S. J. Seltzer, and M. V. Romalis, Detection of NMR signals with a radio-frequency atomic magnetometer, J. Magn. Reson. 185 (2007), 214-220. https://doi.org/10.1016/j.jmr.2006.12.012
- D. A. Keder, D. W. Prescott, A. W. Conovaloff, and K. L. Sauer, An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity, AIP Adv. 4 (2014), 127159.
- I. Savukov, T. Karaulanov, and M. G. Boshier, Ultra-sensitive high-density Rb-87 radio-frequency magnetometer, Appl. Phys. Lett. 104 (2014), 023504.
- C. Deans, L. Marmugi, and F. Renzoni, Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments, Rev. Sci. Instrum. 89 (2018), 083111.
- H. Yao, B. Maddox, and F. Renzoni, High-sensitivity operation of an unshielded single cell radio-frequency atomic magnetometer, Opt. Express 30 (2022), 42015-42025. https://doi.org/10.1364/OE.476016
- IEEE Standard for Information Technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Standard 802.11ac, 2013.