DOI QR코드

DOI QR Code

Electronically tunable compact inductance simulator with experimental verification

  • Kapil Bhardwaj (Department of Electronics and Communication Engineering, National Institute of Technology Jamshedpur) ;
  • Mayank Srivastava (Department of Electronics and Communication Engineering, National Institute of Technology Jamshedpur) ;
  • Anand Kumar (Department of Electronics and Communication Engineering, National Institute of Technology Jamshedpur) ;
  • Ramendra Singh (Department of CSE (IOT), Raj Kumar Goel Institute of Technology) ;
  • Worapong Tangsrirat (Department of Instrumentation and Control Engineering, King Mongkut's Institute of Technology Ladkrabang)
  • Received : 2023.01.15
  • Accepted : 2023.03.15
  • Published : 2024.06.20

Abstract

A novel inductance simulation circuit employing only two dual-output voltage-differencing buffered amplifiers (DO-VDBAs) and a single capacitance (grounded) is proposed in this paper. The reported configuration is a purely resistor-less realization that provides electronically controllable realized inductance through biasing quantities of DO-VDBAs and does not rely on any constraints related to matched values of parameters. This structure exhibits excellent behavior under the influence of tracking errors in DO-VDBAs and does not exhibit instability at high frequencies. The simple and compact metal-oxide semiconductor (MOS) implementation of the DO-VDBAs (eight MOS per DO-VDBA) and adoption of grounded capacitance make the proposed circuit suitable for on-chip realization from the perspective of chip area consumption. The function of the pure grounded inductance is validated through high pass/bandpass filtering applications. To test the proposed design, simulations were performed in the PSPICE environment. Experimental validation was also conducted using the integrated circuit CA3080 and operational amplifier LF-356.

Keywords

References

  1. A. Sedra and K. Smith, A second-generation current conveyor and its applications, IEEE Trans. Circ. Theory 17 (1970), no. 1, 132-134.
  2. O. Cicekoglu, A. Toker, and H. Kuntman, Universal immittance function simulators using current conveyors, Comput. Electr. Eng. 27 (2001), no. 3, 227-238.
  3. A. M. Soliman, New active-gyrator circuit using a single current conveyer, Proc. IEEE 66 (1978), no. 11, 1580-1581.
  4. M. O. Cicekoglu, Active simulation of grounded inductors with CCII+ s and grounded passive elements, Int. J. Electron. 85 (1998), no. 4, 455-462.
  5. E. Yuce, Grounded inductor simulators with improved low-frequency performances, IEEE Trans. Instrum. Meas. 57 (2008), no. 5, 1079-1084.
  6. H. Alpaslan and E. Yuce, Bandwidth expansion methods of inductance simulator circuits and voltage-mode biquads, J. Circ. Syst. Comput. 20 (2011), no. 03, 557-572.
  7. E. Yuce and O. Cicekoglu, The effects of non-idealities and current limitations on the simulated inductances employing current conveyors, Analog Integr. Circ. Sig. Process 46 (2006), no. 2, 103-110.
  8. G. Ferri, N. C. Guerrini, R. Romanato, G. Scotti, and A. Trifiletti, CCII-based high-valued inductance simulators with minumum number of active elements, (2007 18th European Conference on Circuit Theory and Design, Seville, Spain), 2007, pp. 440-443.
  9. I. Myderrizi, S. Minaei, and E. Yuce, DXCCII-based grounded inductance simulators and filter applications, Microelectron. J. 42 (2011), no. 9, 1074-1081.
  10. E. Yuce and S. Minaei, On the realization of simulated inductors with reduced parasitic impedance effects, Circ. Syst. Signal Process. 28 (2009), no. 3, 451-465.
  11. B. Metin, Canonical inductor simulators with grounded capacitors using DCCII, Int. J. Electron. 99 (2012), no. 7, 1027-1035.
  12. F. Kacar and A. Ye,sil, Novel grounded parallel inductance simulators realization using a minimum number of active and passive components, Microelectron. J. 41 (2010), no. 10, 632-638.
  13. N. Herencsar, A. Lahiri, J. Koton, K. Vrba, and B. Metin, Realization of resistorless lossless positive and negative grounded inductor simulators using single ZC-CCCITA, Radioengineering 21 (2012), no. 1.
  14. M. A. Ibrahim, S. Minaei, E. Yuce, N. Herencsar, and J. Koton, Lossy/lossless floating/grounded inductance simulation using one DDCC, Radioengineering 21 (2012), no. 1.
  15. F. Kacar, A. Ye,sil, S. Minaei, and H. Kuntman, Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements, AEU-Int. J. Electron. Commun. 68 (2014), no. 1, 73-78.
  16. A. Ye,sil, F. Kacar, and K. Gurkan, Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application, AEU-Int. J. Electron. Commun. 68 (2014), no. 2, 143-150.
  17. E. Yuce, Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components, Analog Integr. Circ. Sig. Process 59 (2009), no. 1, 77-82.
  18. E. Arslan, B. Metin, N. Herencsar, J. Koton, A. Morgul, and O. Cicekoglu, High performance wideband CMOS CCI and its application in inductance simulator design, Adv. Electr. Comput. Eng. 12 (2012), no. 3, 21-26.
  19. F. Kacar and H. Kuntman, Cfoa-based lossless and lossy inductance simulators, Radioengineering 20 (2011), no. 3, 627-631.
  20. E. Yuce, S. Minaei, and O. Cicekoglu, Limitations of the simulated inductors based on a single current conveyor, IEEE Trans. Circ. Syst. I: Regular Papers 53 (2006), no. 12, 2860-2867.
  21. R. Pandey, N. Pandey, S. K. Paul, A. Singh, B. Sriram, and K. Trivedi, New topologies of lossless grounded inductor using OTRA, J. Electr. Comput. Eng. 2011 (2011), 1-6.
  22. A. Paul and D. Patranabis, Active simulation of grounded inductors using a single current conveyor, IEEE Trans. Circ. Syst. 28 (1981), no. 2, 164-165.
  23. P. Kumar and R. Senani, New grounded simulated inductance circuit using a single PFTFN, Analog Integr. Circ. Sig. Process 62 (2010), no. 1, 105-112.
  24. D. Prasad, D. R. Bhaskar, and A. K. Singh, New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers, Radioengineering 19 (2010), no. 1, 194-198.
  25. P. V. A. Mohan, Grounded capacitor based grounded and floating inductance simulation using current conveyors, Electron. Lett. 34 (1998), no. 11, 1037-1038.
  26. R. Pandey, N. Pandey, S. K. Paul, A. Singh, B. Sriram, and K. Trivedi, Novel grounded inductance simulator using single otra, Int. J. Circ. Theory Appl. 42 (2014), no. 10, 1069-1079.
  27. E. Yuce, S. Minaei, and O. Cicekoglu, A novel grounded inductor realization using a minimum number of active and passive components, EETRI J. 27 (2005), no. 4, 427-432.
  28. M. A. Ibrahim, S. Minaei, E. Yuce, N. Herencsar, and J. Koton, Lossless grounded inductance simulation using only one modified dual output DDCC, (34th International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary), 2011, pp. 261-264.
  29. B. Metin, N. Herencsar, J. Koton, and J.-W. Horng, DCCII-based novel lossless grounded inductance simulators with no element matching constrains, Radioengineering 23 (2014), no. 1, 532-539.
  30. N. Herencsar, J. Koton, and K. Vrbra, CFTA-based active-C grounded positive inductance simulator and its application, Elektrorevue 1 (2010), no. 1, 24-27.
  31. A. Abaci and E. Yuce, Modified dvcc based quadrature oscillator and lossless grounded inductor simulator using grounded capacitor (s), AEU-Int. J. Electron. Commun. 76 (2017), 86-96.
  32. U. Cam, F. Kacar, O. Cicekoglu, H. Kuntman, and A. Kuntman, Novel two otra-based grounded immitance simulator topologies, Analog Integr. Circ. Sig. Process 39 (2004), no. 2, 169-175.
  33. E. Arslan, U. Cam, and O. Cicekoglu, Novel lossless grounded inductance simulators employing only a single first generation current conveyor, Frequenz 57 (2003), no. 9-10, 204-206.
  34. A. Gupta, R. Senani, D. R. Bhaskar, and A. K. Singh, OTRA-based grounded-FDNR and grounded-inductance simulators and their applications, Circ. Syst. Signal Proc. 31 (2012), no. 2, 489-499.
  35. D. R. Bhaskar, D. Prasad, and K. L. Pushkar, Electronically-controllable grounded-capacitor-based grounded and floating inductance simulated circuits using VD-DIBAs, Circuits Syst. 4 (2013), no. 5. https://doi.org/10.4236/cs.2013.45055
  36. D. Prasad, D. R. Bhaskar, and K. L. Pushkar, Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers, Active Passive Electron Components 2011 (2011), 1580-1581. https://doi.org/10.1155/2011/101432
  37. A. Yesil, E. Yuce, and S. Minaei, Inverting voltage buffer based lossless grounded inductor simulators, AEU-Int. J. Electron. Commun. 83 (2018), 131-137.
  38. F. Mohammad, J. Sampe, S. Shireen, and S. H. M. Ali, Minimum passive components based lossy and lossless inductor simulators employing a new active block, AEU-Int. J. Electron. Commun. 82 (2017), 226-240.
  39. P. Mongkolwai and W. Tangsrirat, Generalized impedance function simulator using voltage differencing buffered amplifiers (VDBAs), (Proceeding of international multiconference of engineers and computer scientists), Vol. 2, 2016.
  40. A. Yesil and F. Kacar, VDBA-based lossless and lossy inductance simulators and its filter applications, (24th Signal Processing and Communication Application Conference, Zonguldak, Turkey), 2016, pp. 909-912.
  41. E. Yuce, L. Safari, S. Minaei, G. Ferri, G. Barile, and V. Stornelli, A new simulated inductor with reduced series resistor using a single VCII, Electron. 10 (2021), no. 14, 1693.
  42. E. Yuce, H. Alpaslan, S. Minaei, and U. E. Ayten, A new simulated grounded inductor based on two NICs, two resistors and a grounded capacitor, Circ. Syst. Signal Process. 40 (2021), no. 12, 5847-5863.
  43. T. K. Paul, S. Roy, and R. R. Pal, Tunable lossy and lossless grounded inductors using minimum active and passive components, Int. J. Eng. Technol. Innov. 11 (2021), no. 3, 171.
  44. T. Yucehan and E. Yuce, CCII-based simulated floating inductor and floating capacitance multiplier, Analog Integr. Circ. Signal Process. 112 (2022), 417-432.
  45. Y. S. Singh, A. Ranjan, S. Adhikari, and B. A. Shimray, Lossless grounded resistorless active inductor using ftfnta, (Proceedings of the 3rd International Conference on Communication, Devices and Computing), Springer, 2022, pp. 273-282.
  46. L. Safari, G. Barile, D. Colaiuda, V. Stornelli, and G. Ferri, Realization of an electronically tunable resistor-less floating inductance simulator using VCII, Electron. 11 (2022), no. 3, 312.
  47. S. Pushpam, K. Bhardwaj, and M. Srivastava, New electronically tunable immittance simulator using CBTA and its filtering applications, (6th International Conference on Intelligent Computing and Control Systems, Madurai, India), 2022, pp. 282-286.
  48. B. C. Nagar and S. K. Paul, Lossless grounded admittance simulator using OTRA, Analog Integr. Circ. Sig. Process 106 (2021), no. 3, 649-659.
  49. W. Jaikla, S. Bunrueangsak, F. Khateb, T. Kulej, P. Suwanjan, and P. Supavarasuwat, Inductance simulators and their application to the 4th order elliptic lowpass ladder filter using CMOS VD-DIBAs, Electronics 10 (2021), no. 6, 684.
  50. J. Satansup, N. Roongmuanpha, T. Pukkalanun, and W. Tangsrirat, Realization of lossy parallel inductance simulator using single VDGA and a grounded capacitor, (International Electrical Engineering Congress, Khon Kaen, Thailand), 2022, pp. 1-4.
  51. W. Tangsrirat and W. Surakampontorn, Tunable active grounded lossless and lossy inductance simulators with single grounded capacitor using VDBAs, Sci. Iranica. Trans. D, Comput. Sci. Eng. Electr. 29 (2022), no. 2, 739-748. 
  52. W. Jaikla, R. Sotner, and F. Khateb, Design and analysis of floating inductance simulators using VDDDAs and their applications, AEU-Int. J. Electron. Commun. 112 (2019), 152937.
  53. Y. S. Singh, A. Ranjan, S. Adhikari, and B. A. Shimray, A lossless active inductor design using single ZC-VDCC Grounded and floating mode, IETE J. Res. 5 (2022), 1-15.
  54. R. Sotner, J. Jerabek, and N. Herencsar, Voltage differencing buffered/inverted amplifiers and their applications for signal generation, Radioengineering 22 (2013), no. 2, 490-504.
  55. Intersil, 2001. 2 MHz, Operational Transconductance Amplifier.
  56. T. Instruments, LF155/LF156/LF256/LF257/LF355/LF356/LF357 JFET Input Operational Amplifiers, 2013.