DOI QR코드

DOI QR Code

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Xiaofei Zhang (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Honghao Hao (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics)
  • Received : 2023.02.24
  • Accepted : 2023.07.17
  • Published : 2024.06.20

Abstract

In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.

Keywords

References

  1. Z. Tang and A. Manikas, Multi direction-of-arrival tracking using rigid and flexible antenna arrays, IEEE Trans. Wireless. Commun. 20 (2021), 7568-7580. https://doi.org/10.1109/TWC.2021.3085753
  2. C. Liu, M. Li, L. Zhao, P. Whiting, S. V. Hanly, I. B. Collings, and M. Zhao, Robust adaptive beam tracking for mobile millimeter wave communications, Trans. Wireless. Commun. 20 (2021), 1918-1934. https://doi.org/10.1109/TWC.2020.3037552
  3. H. Ye, B. Yang, Z. Long, and C. Dai, A method of indoor positioning by signal fitting and PDDA algorithm using BLE AOA device, IEEE Sensors J. 22 (2022), 7877-7887. https://doi.org/10.1109/JSEN.2022.3141739
  4. M. Wagner, Y. Park, and P. Gerstoft, Gridless DOA estimation and root-MUSIC for non-uniform linear arrays, IEEE Trans. Signal Proc. 69 (2021), 2144-2157. https://doi.org/10.1109/TSP.2021.3068353
  5. L. Xu, J. Lien, and J. Li, Doppler-range processing for enhanced high-speed moving target detection using LFMCW automotive radar, IEEE Trans. Aerosp. Electron. Sys. 58 (2022), 568-580. https://doi.org/10.1109/TAES.2021.3101768
  6. Q. Li, B. Chen, and M. Yang, Improved two-step constrained total least-squares TDOA localization algorithm based on the alternating direction method of multipliers, IEEE Sensors J. 20 (2020), 13666-13673. https://doi.org/10.1109/JSEN.2020.3004235
  7. F. Ma, Z. M. Liu, and F. Guo, Direct position determination in asynchronous sensor networks, IEEE Trans. Vehic. Technol. 68 (2019), 8790-8803. https://doi.org/10.1109/TVT.2019.2928638
  8. L. Wang, Y. Yang, and X. Liu, A direct position determination approach for underwater acoustic sensor networks, IEEE Trans. Vehic. Technol. 69 (2020), 13033-13044. https://doi.org/10.1109/TVT.2020.3018489
  9. T. Tirer and A. J. Weiss, Performance analysis of a highresolution direct position determination method, IEEE Trans. Signal Proc. 65 (2017), 544-554. https://doi.org/10.1109/TSP.2016.2621729
  10. A. J. Weiss, Direct position determination of narrow-band radio frequency transmitters, IEEE Signal Proc. Let. 11 (2004), 513-516. https://doi.org/10.1109/LSP.2004.826501
  11. B. Demissie, M. Oispuu, and E. Ruthotto, Localization of multiple sources with a moving array using subspace data fusion, (Proc. 11th Int. Conf. Informat. Fusion, IEEE, Cologne, Germany), 2008, pp. 1-7.
  12. Z. Wang, K. Hao, Y. Sun, L. Xie, and Q. Wan, A computationally efficient direct position determination algorithm based on OFDM system, IEEE Commun. Let. 27 (2023), 841-845. https://doi.org/10.1109/LCOMM.2022.3231548
  13. F. Ma, F. Guo, and L. Yang, Direct position determination of moving sources based on delay and Doppler, IEEE Sensors J. 20 (2020), 7859-7869. https://doi.org/10.1109/JSEN.2020.2980012
  14. F. Ma, Z. M. Liu, and F. Guo, Distributed direct position determination, IEEE Trans. Vehic. Technol. 69 (2020), 14007-14012. https://doi.org/10.1109/TVT.2020.3025386
  15. T. Tirer and A. J. Weiss, High resolution direct position determination of radio frequency sources, IEEE Signal Proc. Let. 23 (2016), 192-196. https://doi.org/10.1109/LSP.2015.2503921
  16. J. S. Picard and A. J. Weiss, Direct position determination sensitivity to NLOS propagation effects on Doppler-shift, IEEE Tans. Signal Proc. 67 (2019), 3870-3881. https://doi.org/10.1109/TSP.2019.2923152
  17. L. Steinweg, J. Hebeler, T. Meister, T. Zwick, and F. Ellinger, 8.0-pJ/bit BPSK transmitter with LO phase steering and 52-Gbps data rate operating at 246 GHz, IEEE Trans. Microw. Theory Techniq. 71 (2023), no. 7, 3217-3226. https://doi.org/10.1109/TMTT.2023.3239792
  18. R. K. Mallik and R. Murch, Channel norm based energy detection with diversity reception for amplitude-shift keying in Rayleigh fading, IEEE Trans. Wireless Commun. 22 (2023), 5855-5870. https://doi.org/10.1109/TWC.2023.3237932
  19. J. Yin, Y. Wu, and D. Wang, Direct position determination of multiple noncircular sources with a moving array, Cir. Sys. Signal Proc. 36 (2017), 4050-4076. https://doi.org/10.1007/s00034-017-0499-4
  20. Y. Zhang, B. Ba, D. Wang, W. Geng, and H. Xu, Direct position determination of multiple noncircular sources with moving coprime array, Sensors 18 (2018), 1479.
  21. G. Kumar, P. Ponnusamy, and I. Sadegh Amiri, Direct localization of multiple noncircular sources with a moving nested array, IEEE Access 7 (2019), 101106-101116. https://doi.org/10.1109/ACCESS.2019.2929805
  22. J. Deng, J. Yin, B. Yang, and D. Wang, Direct position determination algorithm for non-circular sources in the presence of mutual coupling and its theoretical performance analysis, IET Signal Proc. 17 (2023), e12193.
  23. X. Zhang, W. Chen, W. Zheng, Z. Xia, and Y. Wang, Localization of near-field sources: a reduced-dimension MUSIC algorithm, IEEE Commun. Let. 22 (2018), 1422-1425. https://doi.org/10.1109/LCOMM.2018.2837049
  24. Z. Li, X. Zhang, and J. Shen, 2D-DOA estimation of strictly non-circular sources utilizing connection-matrix for L-shaped array, IEEE Wireless Commun. Let. 10 (2021), 296-300. https://doi.org/10.1109/LWC.2020.3029457
  25. H. Abeida and J. P. Delmas, MUSIC-like estimation of direction of arrival for noncircular sources, IEEE Trans. Signal Proc. 54 (2006), 2678-2690. https://doi.org/10.1109/TSP.2006.873505
  26. H. Abeida and J. P. Delmas, Direct derivation of the stochastic CRB of DOA estimation for rectilinear sources, IEEE Signal Proc. Let. 24 (2017), 1522-1526. https://doi.org/10.1109/LSP.2017.2744673
  27. J. P. Delmas and H. Abeida, Stochastic Crame/spl acute/r-Rao bound for noncircular signals with application to DOA estimation, IEEE Trans. Signal Proc. 52 (2004), 3192-3199. https://doi.org/10.1109/TSP.2004.836462
  28. L. Wan, K. Liu, Y. C. Liang, and T. Zhu, DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems, IEEE Trans. Wireless Commun. 20 (2021), 3152-3167. https://doi.org/10.1109/TWC.2020.3047866
  29. Q. Wang, X. Wang, and H. Chen, DOA estimation algorithm for strictly noncircular sources with unknown mutual coupling, IEEE Commun. Let. 23 (2018), 2215-2218. https://doi.org/10.1109/LCOMM.2019.2947424
  30. Y. Qian, D. Zhao, and H. Zeng, Direct position determination of noncircular sources with multiple nested arrays: reduced-dimension subspace data fusion, Wirel. Commun. Mobile Comput. 2021 (2021), 1-10.
  31. F. Dong, L. Xu, and X. Li, Particle filter algorithm for DOA tracking using co-prime array, IEEE Commun. Let. 24 (2020), 2493-2497. https://doi.org/10.1109/LCOMM.2019.2953466
  32. S. R. Jondhale and R. S. Deshpande, Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks, IEEE Sensors J. 19 (2019), 224-233. https://doi.org/10.1109/JSEN.2018.2873357