DOI QR코드

DOI QR Code

Evaluation of Effective Dose for Asian Adult Men on Dental Cone-Beam Computed Tomography using Personal Computer Based Monte Carlo Simulation

개인용 컴퓨터 기반 몬테카를로 시뮬레이션을 이용한 동양인 성인 남성의 치과용 콘빔시티 유효선량 평가

  • Hae-Soo Joun (Department of Bio-health Convergence, Graduate School of Maister, Daegu Health College) ;
  • Youngjun Kim (Department of Early Childhood Education, Daegu Health College) ;
  • Jungsu Kim (Department of Radiologic-technology, Daegu Health College)
  • 전해수 (대구보건대학교 마이스터대학 바이오헬스융합학과 의료융합방사선전공) ;
  • 김영준 (대구보건대학교 유아교육학과) ;
  • 김정수 (대구보건대학교 방사선학과)
  • Received : 2024.09.23
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

Cone-Beam Computed Tomography (CBCT) for dental diagnosis has been used for maxillofacial imaging in dental radiology for many years, and increasing in popularity. The number of such inspections increased by approximately 32.4% from 850,000 in 2020 to 1.12 million in 2022. With the increase in dental radiology examinations, the collective effective dose from dental radiology increased by approximately 19.4% from 766 man·Sv in 2020 to approximately 914 man·Sv in 2022. In this study, the effective dose of Cone Beam CT examination was evaluated using Personal Computer(PC)-based computer simulation. The simulation were set identically to the test conditions of the imaging equipment (RCT-820 Ray Co., Ltd.) and compared two methods with Field Of View(FOV) values of 18×16.5 cm and 16×10 cm and an asian adult men phantom was used. The average result at 18×16.5 cm FOV was 223.1 µSv, and the effective dose value at 16×10 cm FOV was averaged at 122.8 µSv. As the irradiation area became smaller, the effective dose value decreased, and the absorbed dose to organ was 1.6 mSv in the 18×16.5 cm FOV, indicating a considerably high tissue equivalent dose. As a result, this study finds the importance of appropriate FOV setting and protective equipment such as a thyroid protector when Cone Beam CT test is performed at a dental site. Also, It is believed that it can be expected that dental medical workers will be able to actively and carefully control irradiation dose settings using the easy-to-use PCXMC program.

치과진단용 콘빔시티(Cone-Beam Computed Tomography, CBCT)는 수년 동안 치과영상의학 분야 악안면 영상화에 사용되어 왔으며, 그 사용 빈도 또한 증가하고 있다. 촬영건수와 설치대수가 해마다 증가하므로 집단 유효선량도 증가하고 있다. 치과용 콘빔시티의 검사 건수는 2020년 85만 건에서 2022년 112만 건으로 약 32.4% 증가하였다. 검사 건수가 증가함에 따른 집단 유효선량도 2020년 766 man·Sv에서 2022년 약 914 man·Sv로 약 19.4% 증가 추세이다. 이에 본 연구에서는 의료분야에 선량을 평가하기 위해 동양인 성인 남성 팬텀과 PCXMC 프로그램을 이용하여 콘빔시티의 유효선량과 장기의 흡수선량을 계산하였다. 조사면적(Feild Of View, FOV)의 최대로 스캔하는 방식과, 평균 조사면적으로 스캔하는 방식의 두 가지 조건으로 전산모사를 각각 10회 시행하여 평균값을 도출하였다. 조사면적이 최대로 스캔한 유효선량 값은 233.1 µSv로 평균 조사면적으로 스캔한 유효선량 값보다 89.8% 증가하였다. 아울러 장기의 흡수선량을 살펴보면 조사면적이 최대로 스캔하는 방식인 경우 갑상샘의 선량이 1.6 mSv로 나타났다. 따라서 치과 현장에서 콘빔시티 검사를 시행하기 위해 적절한 조사면적 설정과 갑상샘 보호대와 같은 적절한 방어 장비의 착용이 권고되며, 쉽게 사용할 수 있는 PCXMC 프로그램을 이용하여 치과 의료분야 종사자들이 조사선량 설정을 능동적으로 세심하게 조절 할 수 있는 부분을 기대해볼 수 있다고 사료된다.

Keywords

Acknowledgement

본 연구는 질병관리청 연구용역사업 연구비를 지원받아 수행되었다. (No: 2024-10-002)

References

  1. M. M. Rehani, R. Gupta, S. Bartling, G. C. Sharp, R. Pauwels, T. Berris, J. M. Boone, "ICRP Publication 129: Radiological Protection in Cone Beam Computed Tomography (CBCT)", Annals of the ICRP, Vol. 44, No. 1, pp. 87-91, 2015. http://dx.doi.org/10.1177/0146645315575485 
  2. Y. M. Ji, S. Y. Lim, "Diagnostic reference level guidelines-Dental imaging(Intraoral, Panaromic, CBCT)", Korea Disease Control and Prevention Agency, 2024. https://doi.org/10.56786/PHWR.2024.17.33.1 
  3. S. Y. Kim, J. W. Han, I. W. Park, "Comparison of cone beam CT and conventional CT in absorbed and effective dose", Imaging Science in Dentistry, Vol. 38, pp. 7-15, 2008. 
  4. D. G. Baek, Product Data for R2 STUDIO Q, RayTM, pp. 16, 2022. 
  5. A. Servomaa, M. Tapiovaara, "Organ Dose Calculation in Medical X ray examinations by the Program PCXMC", Radiatrion Protection Dosimetry, Vol. 80, pp. 213-219, 1998. http://dx.doi.org/10.1093/oxfordjournals.rpd.a032509 
  6. K. J. Kim, J. G. Shim, "A Study on the Shielding Element Using Monte Carlo Simulation", Journal of Radiological Science and Technology, Vol. 40, No. 2, pp. 269-274. 2017. https://doi.org/10.17946/JRST.2017.40.2.12 
  7. E. K. Kim, "Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software", The Journal of The Korean Dental Association, Vol. 58, No. 7, pp. 388-397, 2020. http://dx.doi.org/10.22974/jkda.2020.58.7.001 
  8. W. O. G. Batista, "Use of Monte Carlo Simulation Software for Calculation Effective dose in Cone Beam Computed Tomography", XVI International Symposium on State Dosimetry ISSSD 2016, Vol. 2, pp. 237-246, 2016. 
  9. C. N. Lee, J. M. Yoon, S. S. Han, J. Y. Na, J. H. Lee, Y. H. Kim, J. J. Hwang, C. P. Lin, "Dose assessment in dental cone-beam computed tomography: Comparion of optically stimulated luminescence dosimetry with Monte Carlo method", PLOS ONE, Vol. 15, No. 3, pp. 219103, 2020. https://doi.org/10.1371/journal.pone.0219103 
  10. E. K. Kim, W. J. Han, J. W. Choi, B. Battulga, "Estimation of the effective dose of dental cone-beam computed tomography using personal computer-based Monte Carlo software", Imaging Science in Dentistry, Vol. 48, pp. 21-30, 2018. http://dx.doi.org/10.5624/isd.2018.48.1.21 
  11. Size Korea, face width of male, From URL; https://sizekorea.kr/human-meas-search/human-data-search/meas-item 
  12. I. Shatskiy, "Effective Doses and Radiation Risks From Common Dental Radiographic, Panoramic and CBCT Examinations", Radiation Protection Dosimetry, Vol. 195, pp. 296-305, 2021. http://dx.doi.org/10.1093/rpd/ncab069 
  13. S. Terashima, J. Sano, M. Osanai, K. Toshima, K. Ohuchi, Y. Hosokawa, "Monte Carlo simulations of organ and effective doses and dose-length product for dental cone-beam CT", Oral Radiology, Vol. 40, No. 3, pp. 37-48, 2024. http://dx.doi.org/10.1007/s11282-024-00757-3 
  14. Y. Li, B. Huang, J. Cao, T. Fang, G. Liu, "Estimating Radiation Dose to Major Organs in Dental X-Ray Examinations: A Phantom Study", Radiation Protection Dosimetry, Vol. 192, No. 3, pp. 328-334, 2020. http://dx.doi.org/10.1093/rpd/ncaa196 
  15. T. Kawasaki, T. Aoyama, C. Yamauchi-Kawaura, K. Fuhjii, S. Koyama, "Organ dose and effective dose estimation in paediatric chest radiographic examinations by using pin silicon photodiode dosemeters", Radiation Protection Dosimetry, Vol. 154, Issue 3, pp. 314-319, 2013. 
  16. T. Okano, A. Matsuo, K. Goton, M. Yokoi, A. Hirukawa, S. Okumura, S. Koyama, "Comparison of absorbed and effective dose from two dental cone beam computed tomography scanners", Nihon Hoshasen Gijutsu Gakkai Zasshi, Vol. 68, No. 4, 2012. 
  17. S. C. Han, B. R. Lee, G. S. Shin, "Evaluation of Effective Dose in Dental Radiography", Journal of radiological science and technology, Vol. 34, pp. 27-33, 2011. 
  18. H. U. Nam, M. Y. Lee, H. J. Ra, Y. J. Yun, "Study on the investigation for radiation doses of Korean population from exposures to natural and man-made radiation sources", Nuclear Safety and Security Commission radiation safety regulation technology development research final report, pp. 321-326, 2020. Accessed at : https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO202100006279&dbt=TRKO&rn= 
  19. C. S. Jeong, J. Y. Kim, "Radiation Exposure Evaluation Depending on Radiation Workers' Locations during Dental Radiography", Journal of the Korean Society of Radiology, Vol. 9, No. 7, pp. 433-438, 2015. http://dx.doi.org/10.7742/jksr.2015.9.7.433