Acknowledgement
This research was supported by 'The Construction Project for Regional Base Information Security Cluster', a grant funded by the Ministry of Science, ICT and Busan Metropolitan City in 2024.
References
- S. Sun, Z. Liu, C. Xiong, Z. Liu, and J. Bao, "Capturing Global Informativeness in Open Domain Keyphrase Extraction," Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.13639
- T. Joachims, "A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization."
- D. M. Blei, A. Y. Ng, and J. B. Edu, "Latent Dirichlet Allocation Michael I. Jordan," 2003.
- M. Basaldella, E. Antolli, G. Serra, and C. Tasso, "Bidirectional LSTM recurrent neural network for keyphrase extraction," in Communications in Computer and Information Science, Springer Verlag, 2018, pp. 180-187. doi: 10.1007/978-3-319-73165-0_18.
- Y. Zhang, M. Tuo, Q. Yin, L. Qi, X. Wang, and T. Liu, "Keywords extraction with deep neural network model," Neurocomputing, vol. 383, pp. 113-121, Mar. 2020, doi: 10.1016/j.neucom.2019.11.083.
- T. Nomoto, "Keyword Extraction: A Modern Perspective," SN Comput Sci, vol. 4, no. 1, Jan. 2023, doi: 10.1007/s42979-022-01481-7.
- P. Sharma and Y. Li, "Self-supervised Contextual Keyword and Keyphrase Retrieval with Self-Labelling," 2019, doi: 10.20944/preprints201908.0073.v1.
- C. Yoo and H. Lee, "Improving Abstractive Dialogue Summarization Using Keyword Extraction," Applied Sciences (Switzerland), vol. 13, no. 17, Sep. 2023, doi: 10.3390/app13179771.
- A. Priyanshu and S. Vijay, "AdaptKeyBERT: An Attention-Based approach towards Few-Shot & Zero-Shot Domain Adaptation of KeyBERT," Nov. 2022, [Online]. Available: http://arxiv.org/abs/2211.07499
- R. Y. Maragheh et al., "LLM-TAKE: Theme Aware Keyword Extraction Using Large Language Models," Dec. 2023, [Online]. Available: http://arxiv.org/abs/2312.00909
- A. K. Jain, M. N. Murty, and P. J. Flynn, "Data Clustering: A Review," 2000.
- L. George and P. Sumathy, "An integrated clustering and BERT framework for improved topic modeling," International Journal of Information Technology (Singapore), vol. 15, no. 4, pp. 2187-2195, Apr. 2023, doi: 10.1007/s41870-023-01268-w.
- S. Syed and M. Spruit, "Full-Text or abstract? Examining topic coherence scores using latent dirichlet allocation," in Proceedings - 2017 International Conference on Data Science and Advanced Analytics, DSAA 2017, Institute of Electrical and Electronics Engineers Inc., Jul. 2017, pp. 165-174. doi: 10.1109/DSAA.2017.61.
- Q. Xie and L. Waltman, "A comparison of citation-based clustering and topic modeling for science mapping," 2023. doi: https://doi.org/10.48550/arXiv.2309.06160.
- D. Sharma, B. Kumar, and S. Chand, "A Trend Analysis of Machine Learning Research with Topic Models and Mann-Kendall Test," International Journal of Intelligent Systems and Applications, vol. 11, no. 2, pp. 70-82, Feb. 2019, doi: 10.5815/ijisa.2019.02.08.