Acknowledgement
This Research was supported by Seokyeong University in 2023.
References
- M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de O. Pinto, J. Kaplan, and W. Zaremba, "Evaluating Large Language Models Trained on Code," arXiv preprint arXiv:2107.03374, 2021. DOI: https://doi.org/10.48550/arXiv.2107.03374
- A. Svyatkovskiy, S. Deng, S. Fu, and N. Sundaresan, "IntelliCode Compose: Code Generation Using Transformer," Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1433-1443, 2020. DOI: https://doi.org/10.1145/3368089.3417058
- M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshyvanyk, "Deep learning similarities from different representations of source code," 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR), pp. 542-553, 2018. DOI: https://dl.acm.org/doi/10.1145/3196398.3196431
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative Adversarial Networks," Communications of the ACM, Volume 63, Issue 11, pp. 139-144, 2020. DOI: https://doi.org/10.1145/3422622
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, and D. Amodei, "Language models are few-shot learners," Advances in Neural Information Processing Systems, Vol. 33, pp. 1877-1901, 2020. DOI: https://doi.org/10.48550/arXiv.2005.14165
- H. Pearce, B. Ahmad, B. Tan, B.D. Gavitt, and R. Karri, "Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions," In 2022 IEEE Symposium on Security and Privacy (SP), pp. 754-768, 2022. DOI: https://doi.org/10.1109/SP46214.2022.9833571
- N. Perry, M. Srivastava, D. Kumar, and D. Boneh, "Do Users Write More Insecure Code with AI Assistants?," CCS '23: Proc. of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 2785-2799, 2023. DOI: https://doi.org/10.1145/3576915.3623157
- K. Beck, Test-Driven Development: By Example. Addison-Wesley Professional, 2003.
- A. Svyatkovskiy, S. Deng, S. Fu, and N. Sundaresan, " Intellicode Compose: Code Generation Using Transformer, " Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1433-1443, 2020. DOI: http://doi.org/10.1145/3368089.3417058
- J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton, "Program Synthesis with Large Language Models, " arXiv preprint arXiv:2108.07732, 2021. DOI: https://doi.org/10.48550/arXiv.2108.07732
- Y. Tian, K. Pei, S. Jana, and B. Ray, "DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars," Proceedings of the 40th International Conference on Software Engineering, pp. 303-314. 2021. DOI: https://doi.org/10.48550/arXiv.1708.08559
- H. Ayenew and M. Wagaw, "Software Test Case Generation Using Natural Language Processing (NLP): A Systematic Literature Review," Artificial Intelligence Evolution, pp. 1-10, 2024. DOI: https://doi.org/10.37256/aie.5120243220
- S. Bhatia, T. Gandhi, D. Kumar, and P. Jalote. "Unit Test Generation using Generative AI : A Comparative Performance Analysis of Autogeneration Tools," In Proceedings of the 1st International Workshop on Large Language Models for Code (LLM4Code '24). ACM, NY, USA, pp. 54-61, 2024. DOI:https://doi.org/10.1145/3643795.3648396
- M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk, "An Empirical Study on Learning Bug-Fixing Patches in the Wild via Neural Machine Translation," ACM Transactions on Software Engineering and Methodology, vol. 28, no. 4, pp. 1-29, 2019. DOI: https://doi.org/10.48550/arXiv.1812.08693
- M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Shingh, "Neural Program Repair by Jointly Learning to Localize and Repair," Proceedings of the 6th International Conference on Learning Representations, 2019. DOI:https://doi.org/10.48550/arXiv.1904.01720