DOI QR코드

DOI QR Code

Thermoluminescence response of carbon ion beam irradiated LiCaAlF6: Tb phosphor

  • Pooja Seth (University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University) ;
  • Aayushi Jain (University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University) ;
  • Shruti Aggarwal (University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University)
  • Received : 2023.12.26
  • Accepted : 2024.06.11
  • Published : 2024.11.25

Abstract

Accurate measurement of the dose delivered to patients is crucial in any radiation therapy, including C ion beam radiotherapy, to ensure effective treatment and minimize the risk of damage to healthy tissues. The accessibility of thermoluminescence (TL) - based materials for carbon ion beam dosimetry continues to be constrained. With the aim of this, an investigation has been done to study the TL properties of the Terbium (Tb) doped LiCaAlF6 phosphor following irradiation with C ion beam. The LiCaAlF6: Tb phosphor has been synthesized using melting method in argon gas atmosphere. TL glow curves has been analyzed on exposure to carbon ion beams at energies of 85 MeV and 50 MeV within the fluence range of 109 - 1012 ions/cm2. The TRIM code, relying on Monte Carlo simulation, has been employed to compute parameters such as absorbed dose, ion range, and energy loss. The Tb-doped LiCaAlF6 phosphor exhibits a glow curve structure with distinctly resolved peaks at 130 ℃ and 325 ℃. Notably, the TL intensity has been significantly increased by 105 times than that of undoped LiCaAlF6. This enhancement is attributed to the generation of a high density of Tb-associated defects within the energy band gap. The TL enhancement has been elucidated based on charge compensation mechanism. Further, TL glow curve shape and structure remain consistent across different energies, i.e., 85 and 50 MeV C ion beams, indicating an energy-independent behavior of this phosphor. Nevertheless, the TL intensity at 85 MeV is higher compared to that at 50 MeV. Detailed dosimetry properties have been investigated for 85 MeV C ion beams within the fluence range 2×109-5×1012 ions/cm2. The phosphor exhibits a sublinear dependence against dose for the studied fluence range with no discernible shift in peak position. The favorable outcomes include low fading during the initial days of storage time and batch homogeneity. TL glow curve analysis indicate the formation of trapping level in the range of 0.90-1.72eV within the band gap of the phosphor which are responsible for TL process. The phosphor's simple glow curve structure, minimal fading, consistent batch homogeneity and high stability of the glow curve suggest that the material can be explored for C ion beam dosimetry application.

Keywords

Acknowledgement

Author PS wants to thank Department of Science and Technology (DST) for giving opportunity to continue research work DST WOS A project (SR/WOS-A/PM-23/2019). This work is also supported by FRGS project, GGSIPU (GGSIPU/DRC/FRGS/2024/1448/14) and Inter University Accelerator Centre (IUAC), New Delhi, India under UFR-61320 project. Authors acknowledge Dr. Ambuj Tripathi, IUAC for their constant help in carrying out the experiment. Thanks are due to Mr. Debashish Sen and Mr. Birender Kumar for their support in TL measurements.

References

  1. U. Amaldi, Cancer therapy with particle accelerators, Nucl. Phys. 654 (1999) C375-C399.  https://doi.org/10.1016/S0375-9474(99)00264-X
  2. U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions, Rep. Prog. Phys. 68 (2005) 1861-1882.  https://doi.org/10.1088/0034-4885/68/8/R04
  3. Herman Suit, Thomas DeLaney, Saveli Goldberg, Harald Paganetti, Ben Clasie, Leo Gerweck, Andrzej Niemierko, Eric Hall, Flanz Jacob, Josh Hallman, Alexei Trofimov, Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiother. Oncol. 95 (1) (2010) 3-22.  https://doi.org/10.1016/j.radonc.2010.01.015
  4. D. Schulz-Ertner, O. Jakel, W. Schlegel, Radiation therapy with charged particles, Semin. Radiat. Oncol. 16 (2006) 249-259.  https://doi.org/10.1016/j.semradonc.2006.04.008
  5. H. Eickhoff, T. Haberer, G. Kraft, U. Krause, M. Richter, R. Steiner, J. Debus, The GSI cancer therapy project, Strahlenther. Onkol. 175 (1999) 21. 
  6. J. Oliver, Physical advantages of particles: protons and light ions, Br. J. Radiol. 20 (2019) 20190428. 
  7. C. Allen, T.B. Borak, H. Tsujii, J. Nickoloff, Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy, Mutat. Res. 711 (2011) 150-157.  https://doi.org/10.1016/j.mrfmmm.2011.02.012
  8. T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Front. Oncol. 10 (2020) 1-12.  https://doi.org/10.3389/fonc.2020.00001
  9. D. Schardt, T. Elsasser, D. Schulz-ertner, Heavy-ion tumor therapy: physical and radiobiological benefts, Rev. Mod. Phys. 82 (2010) 383-425.  https://doi.org/10.1103/RevModPhys.82.383
  10. H. Suit, T. De Laney, S. Goldberg, H. Paganetti, B. Clasie, L. Gerweck, A. Niemierko, E. Hall, J. Flanz, J. Hallman, A. Trofimov, Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiother. Oncol. 95 (2010) 3-22.  https://doi.org/10.1016/j.radonc.2010.01.015
  11. T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Carbon ion therapy: a modern review of an emerging Technology, Front. Oncol. 10 (2020) 1-13.  https://doi.org/10.3389/fonc.2020.00001
  12. S. Hojo, T. Honma, Y. Sakamoto, S. Yamada, Production of 11C-beam for particle therapy, Nucl. Instrum. Methods Phys. Res. B. 240 (2005) 75-78.  https://doi.org/10.1016/j.nimb.2005.06.090
  13. M. Kramer, O. Jakel, T. Haberer, G. Kraft, D. Schardt, U. Weber, Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, Phys. Med. Biol. 45 (2000) 3299-3317.  https://doi.org/10.1088/0031-9155/45/11/313
  14. H. Tsujii, T. Kamada, A review of update clinical results of carbon ion radiotherapy, Jpn. J. Clin. Oncol. 42 (2012) 670-685.  https://doi.org/10.1093/jjco/hys104
  15. G. Kraft, Tumortherapy with ion beams, Nucl. Instrum. Methods Phys. Res. A. 454 (2000) 1-10.  https://doi.org/10.1016/S0168-9002(00)00802-0
  16. C.P. Karger, O. Jakel, H. Palmans, T. Kanai, Dosimetry for ion beam radiotherapy, Phys. Med. Biol. 55 (2010) 193-234. 
  17. J. Amaldi U, G. Kraft, Recent applications of synchrotrons in cancer therapy with carbon ion, EuroPhys. News 36 (2005) 114-118.  https://doi.org/10.1051/epn:2005402
  18. D. Schulz-Ertner, A. Nikoghosyan, C. Thilmann, T. Haberer, O. Jakel, C. Karger, G. Kraft, M. Wannenmacher, J. Debus, Results of carbon ion radiotherapy in 152 patients, Int. J. Radiat. Oncol. Biol. Phys. 58 (2004) 631-640.  https://doi.org/10.1016/j.ijrobp.2003.09.041
  19. N. Salah, N.D. Alharbi, S.S. Habib, S.P. Lochab, Thermoluminescence properties of Al2O3: Tb nanoparticles irradiated by gamma rays and 85 MeV C6+ ion beam, J. Lumin. 167 (2015) 59-64.  https://doi.org/10.1016/j.jlumin.2015.06.004
  20. IEC 62387:2020-01: Radiation Protection Instrumentation - Dosimetry Systems with Integrating Passive Detectors for Individual, Workplace and Environmental Monitoring of Photon and Beta Radiation, International Electrotechnical Commission, Geneva, 2020. 
  21. A.J.J. Bos, High Sensitivity thermoluminescence dosimetry, Nucl. Instrum. Methods Phys. Res. B. 184 (2001) 3-28.  https://doi.org/10.1016/S0168-583X(01)00717-0
  22. D.D. Martino, A. Vedda, C. Montanari, E. Rosetta, E. Mihokova, M. Nikl, H. Sato, A. Yoshikawa, T. Fukuda, Rare earth doped LiCaAlF6 as a new potential dosimetric material, Opt. Mater. 30 (2007) 69-71.  https://doi.org/10.1016/j.optmat.2006.11.022
  23. N. Shiran, A. Gektin, S. Neicheva, V. Voronova, V. Kornienko, K. Shimamura, N. Ichinose, Energy storage in Ce-doped LiCaAlF6 and LiSrAlF6 crystals, Radiat. Meas. 38 (2004) 459-462.  https://doi.org/10.1016/j.radmeas.2004.03.010
  24. K. Shimamura, S.L. Baldochi, I.M. Ranieri, H. Sato, T. Fujita, V.L. Mazzocchi, C.B. R. Parente, C.O. Paiva-Santos, C.V. Santilli, N. Sarukura, T. Fukuda, Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere, J. Cryst. Growth 223 (2001) 383-388.  https://doi.org/10.1016/S0022-0248(01)00593-0
  25. N. Shiran, A. Gektin, S. Neicheva, V. Voronova, V. Kornienko, K. Shimamura, N. Ichinose, Energy storage in Ce-doped LiCaAlF6 and LiSrAlF6 crystals, Radiat. Meas. 38 (2004) 459-462.  https://doi.org/10.1016/j.radmeas.2004.03.010
  26. D.D. Martino, A. Vedda, C. Montanari, E. Rosetta, E. Mihokova, M. Nikl, H. Sato, A. Yoshikawa, T. Fukuda, Rare earth doped LiCaAlF6 as a new potential dosimetric material, Opt. Mater. 30 (2007) 69-71.  https://doi.org/10.1016/j.optmat.2006.11.022
  27. Y.K. More, S.P. Wankhede, S.V. Moharil, M. Kumar, M.P. Chougaonkar, Optically stimulated luminescence in LiCaAlF6: Eu2+ phosphor, Luminescence 30 (6) (2015) 878-882.  https://doi.org/10.1002/bio.2836
  28. B. Dhabekar, N.S. Rawat, N. Gaikwad, S. Kadam, D.K. Koul, Dosimetric characterization of highly sensitive OSL phosphor: LiCaAlF6:Eu,Y, Radiat. Meas. 107 (2017) 7-13.  https://doi.org/10.1016/j.radmeas.2017.10.005
  29. P. Kumar, B. Dhabekar, S. Sharma, D.R. Mishra, N.S. Rawat, S. Kadam, S. Chaudhari, R.M. Chandola, S. Agrawal, Relative energy response of indigenously developed optically stimulated luminescence dosimeters Al2O3:C, LiMgPO4: B and LiCaAlF6: Eu, Y in therapeutic photon and electron beams, Luminescence 35 (8) (2020) 1217-1222.  https://doi.org/10.1002/bio.3832
  30. M.M. Yerpude, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, Comparison of thermoluminescence characteristics in γ-ray and C5+ ion beam-irradiated LiCaAlF6: Ce phosphor, Luminescence 31 (5) (2016) 1115-1124.  https://doi.org/10.1002/bio.3080
  31. P.P. Kulkarni, K.H. Gavhane, M.S. Bhadane, V.N. Bhoraskar, S.S. Dahiwale, S. D. Dhole, Investigation of the photoluminescence and novel thermoluminescence dosimetric properties of NaGdF4:Tb3+ phosphors, Mater. Adv. 1 (2020) 1113-1124.  https://doi.org/10.1039/D0MA00247J
  32. P. Seth, A. Soni, G. Gupta, D.R. Mishra, S. Aggarwal, Impact of Tb doping on luminescence properties of LiCaAlF6 phosphor prepared in argon atmosphere and charge transfer mechanism, J. Lumin. 252 (2022) 119322. 
  33. O.B. Geiss, M. Kramer, G. Kraft, Verification of heavy ion dose distributions using thermoluminescent detectors, Nucl. Instrum. Methods Phys. Res. B 146 (1998) 541-544.  https://doi.org/10.1016/S0168-583X(98)00465-0
  34. S. Som, S. Das, S. Dutta, M.K. Pandey, R.K. Dubey, H.G. Visser, S.K. Sharma, S. P. Lochab, A comparative study on the influence of 150 MeV Ni7+, 120 MeV Ag9 +, and 110 MeV Au8+ swift heavy ions on the structural and thermoluminescence properties of Y2O3: Eu3+/Tb3+ nanophosphor for dosimetric applications, J. Mater. Sci. 51 (2016) 1278-1291.  https://doi.org/10.1007/s10853-015-9376-3
  35. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM-The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. B. 268 (2008) 1818-1823. 
  36. A.K. Bedyal, V. Kumar, O.M. Ntwaeaborwa, H.C. Swart, Thermoluminescence response of 120 MeV Ag9+ and γ-ray exposed LiMgBO3:Dy3+ nanophosphors for dosimetry, Ceram. Int. 42 (2016) 18529-18535.  https://doi.org/10.1016/j.ceramint.2016.08.191
  37. S. Kuze, D. du Boulay, N. Ishizawa, N. Kodama, M. Yamaga, B. Henderson, Structures of LiCaAlF6 and LiSrAlF6 at 120 and 300 K by synchrotron X-ray single-crystal diffraction, J. Solid State Chem. 177 (2004) 3505-3513.  https://doi.org/10.1016/j.jssc.2004.04.039
  38. D. Klimm, G. Lacayo, P. Reiche, Growth of Cr: LiCaAlF6 and Cr: LiSrAlF6 by the Czochralski method, J. Cryst. Growth 210 (2000) 683-693.  https://doi.org/10.1016/S0022-0248(99)00762-9
  39. H.B. Chen, Shiji Fan, Haiping Xia, Yiting Fei, Phase Equilibria in the pseudo-binary systems LiF-CaAlF5 and LiF -SrAF5, J. Cryst. Growth 235 (2002) 596-602.  https://doi.org/10.1016/S0022-0248(01)01814-0
  40. J.B. Amaral, D.F. Plant, M.E.G. Valerio, R.A. Jackson, Computer modeling of defect structure and rare earth doping in LiCaAlF6 and LiSrAlF6, J. Phys. Condens. Matter 15 (2003) 2523-2533.  https://doi.org/10.1088/0953-8984/15/17/308
  41. A. Jain, P. Seth, A. Tripathi, P. Kumar, S. Aggarwal, TL/OSL response of carbon ion beam irradiated NaMgF3: Tb, J. Lumin. 222 (2020) 117159. 
  42. N. Salah, J. Phys. D Appl. Phys. 41 (2008) 155302. 
  43. B.P. Kore, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, A new highly sensitive phosphor for carbon ion dosimetry, RSC Adv. 4 (91) (2006) 49979-49986. 
  44. K. Sharma, S. Bahl, B. Singh, P. Kumar, S.P. Lochab, A. Pandey, BaSO4: Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam, Radiat. Phys. Chem. 145 (2018) 64-73.  https://doi.org/10.1016/j.radphyschem.2017.12.019
  45. P. Bilski, M. Sadel, J. Swakon, A. Weber, Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg, Ti detectors on proton energy and dose, Radiat. Meas. 71 (2014) 39-42.  https://doi.org/10.1016/j.radmeas.2014.02.023
  46. K.K. Gupta, S.J. Dhoble, A.R. Krupski, Facile synthesis and thermoluminescence properties of nano bio-ceramic β-Ca2P2O7: Dy phosphor irradiated with 75A meV C6+ ion beam, Sci. Rep. 10 (1) (2020) 21203, 1-15.  https://doi.org/10.1038/s41598-019-56847-4
  47. K.K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, On the study of the C6+ ion beam and γ-ray induced effect on structural and luminescence properties of Eu doped LiNaSO4: explanation of TSL mechanism using PL, TL and EPR study, Phys. Chem. Chem. Phys. 20 (2018) 1540-1559.  https://doi.org/10.1039/C7CP05835G
  48. A. Halperin, R. Chen, Thermoluminescence of semiconducting diamonds, Phys. Rev. 148 (1996) 839-845.  https://doi.org/10.1103/PhysRev.148.839
  49. Vasilis Pagonis, George Kitis, Claudio Furetta (Eds.), Numerical and Practical Exercises in Thermoluminescence, Springer, New York, 2006. 
  50. Y.S. Horowitz, D. Satinger, L. Oster, N. Issa, M.E. Brandan, O. Avila, M. Rodriguez-Villafuerte, I. Gamboa-deBuen, A.E. Buen, C. Ruiz-Trejo, The extended track interaction model: supralinearity and saturation He-ion TL fluence response in sensitized TLD-100, Radiat. Meas. 33 (2001) 459-473.  https://doi.org/10.1016/S1350-4487(01)00033-6
  51. T. Rivera, Thermoluminescence in medical dosimetry, Appl. Radiat. Isot. 71 (2012) 30-34.  https://doi.org/10.1016/j.apradiso.2012.04.018
  52. G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics, J. Phys. D Appl. Phys. 31 (1998) 2636. 
  53. M. Puchalska, P. Bilski, GlowFit -a new tool for thermoluminescence glow curve deconvolution, Radiat. Meas. 41 (2006) 659. 
  54. R. Chen, Glow curves with general order kinetics, J. Electrochem. Soc. 116 (1969) 1254. 
  55. R. Chen, Y. Kirsh, Analysis of Thermally Stimulated Processes, 15, Pergamon Press, Germany, 1981, p. 162. 
  56. J.M. Kalita, M.L. Chithambo, The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in α-Al2O3:C, Mg, NIMB 394 (2017) 12-19. https://doi.org/10.1016/j.nimb.2016.12.027