Acknowledgement
Author PS wants to thank Department of Science and Technology (DST) for giving opportunity to continue research work DST WOS A project (SR/WOS-A/PM-23/2019). This work is also supported by FRGS project, GGSIPU (GGSIPU/DRC/FRGS/2024/1448/14) and Inter University Accelerator Centre (IUAC), New Delhi, India under UFR-61320 project. Authors acknowledge Dr. Ambuj Tripathi, IUAC for their constant help in carrying out the experiment. Thanks are due to Mr. Debashish Sen and Mr. Birender Kumar for their support in TL measurements.
References
- U. Amaldi, Cancer therapy with particle accelerators, Nucl. Phys. 654 (1999) C375-C399. https://doi.org/10.1016/S0375-9474(99)00264-X
- U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions, Rep. Prog. Phys. 68 (2005) 1861-1882. https://doi.org/10.1088/0034-4885/68/8/R04
- Herman Suit, Thomas DeLaney, Saveli Goldberg, Harald Paganetti, Ben Clasie, Leo Gerweck, Andrzej Niemierko, Eric Hall, Flanz Jacob, Josh Hallman, Alexei Trofimov, Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiother. Oncol. 95 (1) (2010) 3-22. https://doi.org/10.1016/j.radonc.2010.01.015
- D. Schulz-Ertner, O. Jakel, W. Schlegel, Radiation therapy with charged particles, Semin. Radiat. Oncol. 16 (2006) 249-259. https://doi.org/10.1016/j.semradonc.2006.04.008
- H. Eickhoff, T. Haberer, G. Kraft, U. Krause, M. Richter, R. Steiner, J. Debus, The GSI cancer therapy project, Strahlenther. Onkol. 175 (1999) 21.
- J. Oliver, Physical advantages of particles: protons and light ions, Br. J. Radiol. 20 (2019) 20190428.
- C. Allen, T.B. Borak, H. Tsujii, J. Nickoloff, Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy, Mutat. Res. 711 (2011) 150-157. https://doi.org/10.1016/j.mrfmmm.2011.02.012
- T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Front. Oncol. 10 (2020) 1-12. https://doi.org/10.3389/fonc.2020.00001
- D. Schardt, T. Elsasser, D. Schulz-ertner, Heavy-ion tumor therapy: physical and radiobiological benefts, Rev. Mod. Phys. 82 (2010) 383-425. https://doi.org/10.1103/RevModPhys.82.383
- H. Suit, T. De Laney, S. Goldberg, H. Paganetti, B. Clasie, L. Gerweck, A. Niemierko, E. Hall, J. Flanz, J. Hallman, A. Trofimov, Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiother. Oncol. 95 (2010) 3-22. https://doi.org/10.1016/j.radonc.2010.01.015
- T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Carbon ion therapy: a modern review of an emerging Technology, Front. Oncol. 10 (2020) 1-13. https://doi.org/10.3389/fonc.2020.00001
- S. Hojo, T. Honma, Y. Sakamoto, S. Yamada, Production of 11C-beam for particle therapy, Nucl. Instrum. Methods Phys. Res. B. 240 (2005) 75-78. https://doi.org/10.1016/j.nimb.2005.06.090
- M. Kramer, O. Jakel, T. Haberer, G. Kraft, D. Schardt, U. Weber, Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, Phys. Med. Biol. 45 (2000) 3299-3317. https://doi.org/10.1088/0031-9155/45/11/313
- H. Tsujii, T. Kamada, A review of update clinical results of carbon ion radiotherapy, Jpn. J. Clin. Oncol. 42 (2012) 670-685. https://doi.org/10.1093/jjco/hys104
- G. Kraft, Tumortherapy with ion beams, Nucl. Instrum. Methods Phys. Res. A. 454 (2000) 1-10. https://doi.org/10.1016/S0168-9002(00)00802-0
- C.P. Karger, O. Jakel, H. Palmans, T. Kanai, Dosimetry for ion beam radiotherapy, Phys. Med. Biol. 55 (2010) 193-234.
- J. Amaldi U, G. Kraft, Recent applications of synchrotrons in cancer therapy with carbon ion, EuroPhys. News 36 (2005) 114-118. https://doi.org/10.1051/epn:2005402
- D. Schulz-Ertner, A. Nikoghosyan, C. Thilmann, T. Haberer, O. Jakel, C. Karger, G. Kraft, M. Wannenmacher, J. Debus, Results of carbon ion radiotherapy in 152 patients, Int. J. Radiat. Oncol. Biol. Phys. 58 (2004) 631-640. https://doi.org/10.1016/j.ijrobp.2003.09.041
- N. Salah, N.D. Alharbi, S.S. Habib, S.P. Lochab, Thermoluminescence properties of Al2O3: Tb nanoparticles irradiated by gamma rays and 85 MeV C6+ ion beam, J. Lumin. 167 (2015) 59-64. https://doi.org/10.1016/j.jlumin.2015.06.004
- IEC 62387:2020-01: Radiation Protection Instrumentation - Dosimetry Systems with Integrating Passive Detectors for Individual, Workplace and Environmental Monitoring of Photon and Beta Radiation, International Electrotechnical Commission, Geneva, 2020.
- A.J.J. Bos, High Sensitivity thermoluminescence dosimetry, Nucl. Instrum. Methods Phys. Res. B. 184 (2001) 3-28. https://doi.org/10.1016/S0168-583X(01)00717-0
- D.D. Martino, A. Vedda, C. Montanari, E. Rosetta, E. Mihokova, M. Nikl, H. Sato, A. Yoshikawa, T. Fukuda, Rare earth doped LiCaAlF6 as a new potential dosimetric material, Opt. Mater. 30 (2007) 69-71. https://doi.org/10.1016/j.optmat.2006.11.022
- N. Shiran, A. Gektin, S. Neicheva, V. Voronova, V. Kornienko, K. Shimamura, N. Ichinose, Energy storage in Ce-doped LiCaAlF6 and LiSrAlF6 crystals, Radiat. Meas. 38 (2004) 459-462. https://doi.org/10.1016/j.radmeas.2004.03.010
- K. Shimamura, S.L. Baldochi, I.M. Ranieri, H. Sato, T. Fujita, V.L. Mazzocchi, C.B. R. Parente, C.O. Paiva-Santos, C.V. Santilli, N. Sarukura, T. Fukuda, Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere, J. Cryst. Growth 223 (2001) 383-388. https://doi.org/10.1016/S0022-0248(01)00593-0
- N. Shiran, A. Gektin, S. Neicheva, V. Voronova, V. Kornienko, K. Shimamura, N. Ichinose, Energy storage in Ce-doped LiCaAlF6 and LiSrAlF6 crystals, Radiat. Meas. 38 (2004) 459-462. https://doi.org/10.1016/j.radmeas.2004.03.010
- D.D. Martino, A. Vedda, C. Montanari, E. Rosetta, E. Mihokova, M. Nikl, H. Sato, A. Yoshikawa, T. Fukuda, Rare earth doped LiCaAlF6 as a new potential dosimetric material, Opt. Mater. 30 (2007) 69-71. https://doi.org/10.1016/j.optmat.2006.11.022
- Y.K. More, S.P. Wankhede, S.V. Moharil, M. Kumar, M.P. Chougaonkar, Optically stimulated luminescence in LiCaAlF6: Eu2+ phosphor, Luminescence 30 (6) (2015) 878-882. https://doi.org/10.1002/bio.2836
- B. Dhabekar, N.S. Rawat, N. Gaikwad, S. Kadam, D.K. Koul, Dosimetric characterization of highly sensitive OSL phosphor: LiCaAlF6:Eu,Y, Radiat. Meas. 107 (2017) 7-13. https://doi.org/10.1016/j.radmeas.2017.10.005
- P. Kumar, B. Dhabekar, S. Sharma, D.R. Mishra, N.S. Rawat, S. Kadam, S. Chaudhari, R.M. Chandola, S. Agrawal, Relative energy response of indigenously developed optically stimulated luminescence dosimeters Al2O3:C, LiMgPO4: B and LiCaAlF6: Eu, Y in therapeutic photon and electron beams, Luminescence 35 (8) (2020) 1217-1222. https://doi.org/10.1002/bio.3832
- M.M. Yerpude, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, Comparison of thermoluminescence characteristics in γ-ray and C5+ ion beam-irradiated LiCaAlF6: Ce phosphor, Luminescence 31 (5) (2016) 1115-1124. https://doi.org/10.1002/bio.3080
- P.P. Kulkarni, K.H. Gavhane, M.S. Bhadane, V.N. Bhoraskar, S.S. Dahiwale, S. D. Dhole, Investigation of the photoluminescence and novel thermoluminescence dosimetric properties of NaGdF4:Tb3+ phosphors, Mater. Adv. 1 (2020) 1113-1124. https://doi.org/10.1039/D0MA00247J
- P. Seth, A. Soni, G. Gupta, D.R. Mishra, S. Aggarwal, Impact of Tb doping on luminescence properties of LiCaAlF6 phosphor prepared in argon atmosphere and charge transfer mechanism, J. Lumin. 252 (2022) 119322.
- O.B. Geiss, M. Kramer, G. Kraft, Verification of heavy ion dose distributions using thermoluminescent detectors, Nucl. Instrum. Methods Phys. Res. B 146 (1998) 541-544. https://doi.org/10.1016/S0168-583X(98)00465-0
- S. Som, S. Das, S. Dutta, M.K. Pandey, R.K. Dubey, H.G. Visser, S.K. Sharma, S. P. Lochab, A comparative study on the influence of 150 MeV Ni7+, 120 MeV Ag9 +, and 110 MeV Au8+ swift heavy ions on the structural and thermoluminescence properties of Y2O3: Eu3+/Tb3+ nanophosphor for dosimetric applications, J. Mater. Sci. 51 (2016) 1278-1291. https://doi.org/10.1007/s10853-015-9376-3
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM-The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. B. 268 (2008) 1818-1823.
- A.K. Bedyal, V. Kumar, O.M. Ntwaeaborwa, H.C. Swart, Thermoluminescence response of 120 MeV Ag9+ and γ-ray exposed LiMgBO3:Dy3+ nanophosphors for dosimetry, Ceram. Int. 42 (2016) 18529-18535. https://doi.org/10.1016/j.ceramint.2016.08.191
- S. Kuze, D. du Boulay, N. Ishizawa, N. Kodama, M. Yamaga, B. Henderson, Structures of LiCaAlF6 and LiSrAlF6 at 120 and 300 K by synchrotron X-ray single-crystal diffraction, J. Solid State Chem. 177 (2004) 3505-3513. https://doi.org/10.1016/j.jssc.2004.04.039
- D. Klimm, G. Lacayo, P. Reiche, Growth of Cr: LiCaAlF6 and Cr: LiSrAlF6 by the Czochralski method, J. Cryst. Growth 210 (2000) 683-693. https://doi.org/10.1016/S0022-0248(99)00762-9
- H.B. Chen, Shiji Fan, Haiping Xia, Yiting Fei, Phase Equilibria in the pseudo-binary systems LiF-CaAlF5 and LiF -SrAF5, J. Cryst. Growth 235 (2002) 596-602. https://doi.org/10.1016/S0022-0248(01)01814-0
- J.B. Amaral, D.F. Plant, M.E.G. Valerio, R.A. Jackson, Computer modeling of defect structure and rare earth doping in LiCaAlF6 and LiSrAlF6, J. Phys. Condens. Matter 15 (2003) 2523-2533. https://doi.org/10.1088/0953-8984/15/17/308
- A. Jain, P. Seth, A. Tripathi, P. Kumar, S. Aggarwal, TL/OSL response of carbon ion beam irradiated NaMgF3: Tb, J. Lumin. 222 (2020) 117159.
- N. Salah, J. Phys. D Appl. Phys. 41 (2008) 155302.
- B.P. Kore, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, A new highly sensitive phosphor for carbon ion dosimetry, RSC Adv. 4 (91) (2006) 49979-49986.
- K. Sharma, S. Bahl, B. Singh, P. Kumar, S.P. Lochab, A. Pandey, BaSO4: Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam, Radiat. Phys. Chem. 145 (2018) 64-73. https://doi.org/10.1016/j.radphyschem.2017.12.019
- P. Bilski, M. Sadel, J. Swakon, A. Weber, Dependence of the thermoluminescent high-temperature ratio (HTR) of LiF:Mg, Ti detectors on proton energy and dose, Radiat. Meas. 71 (2014) 39-42. https://doi.org/10.1016/j.radmeas.2014.02.023
- K.K. Gupta, S.J. Dhoble, A.R. Krupski, Facile synthesis and thermoluminescence properties of nano bio-ceramic β-Ca2P2O7: Dy phosphor irradiated with 75A meV C6+ ion beam, Sci. Rep. 10 (1) (2020) 21203, 1-15. https://doi.org/10.1038/s41598-019-56847-4
- K.K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, On the study of the C6+ ion beam and γ-ray induced effect on structural and luminescence properties of Eu doped LiNaSO4: explanation of TSL mechanism using PL, TL and EPR study, Phys. Chem. Chem. Phys. 20 (2018) 1540-1559. https://doi.org/10.1039/C7CP05835G
- A. Halperin, R. Chen, Thermoluminescence of semiconducting diamonds, Phys. Rev. 148 (1996) 839-845. https://doi.org/10.1103/PhysRev.148.839
- Vasilis Pagonis, George Kitis, Claudio Furetta (Eds.), Numerical and Practical Exercises in Thermoluminescence, Springer, New York, 2006.
- Y.S. Horowitz, D. Satinger, L. Oster, N. Issa, M.E. Brandan, O. Avila, M. Rodriguez-Villafuerte, I. Gamboa-deBuen, A.E. Buen, C. Ruiz-Trejo, The extended track interaction model: supralinearity and saturation He-ion TL fluence response in sensitized TLD-100, Radiat. Meas. 33 (2001) 459-473. https://doi.org/10.1016/S1350-4487(01)00033-6
- T. Rivera, Thermoluminescence in medical dosimetry, Appl. Radiat. Isot. 71 (2012) 30-34. https://doi.org/10.1016/j.apradiso.2012.04.018
- G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics, J. Phys. D Appl. Phys. 31 (1998) 2636.
- M. Puchalska, P. Bilski, GlowFit -a new tool for thermoluminescence glow curve deconvolution, Radiat. Meas. 41 (2006) 659.
- R. Chen, Glow curves with general order kinetics, J. Electrochem. Soc. 116 (1969) 1254.
- R. Chen, Y. Kirsh, Analysis of Thermally Stimulated Processes, 15, Pergamon Press, Germany, 1981, p. 162.
- J.M. Kalita, M.L. Chithambo, The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in α-Al2O3:C, Mg, NIMB 394 (2017) 12-19. https://doi.org/10.1016/j.nimb.2016.12.027