DOI QR코드

DOI QR Code

Radiological, environmental, and structural investigations of Wadi El Markh granitic rocks, southeastern desert, Egypt

  • Mahmoud R. Khattab (Nuclear Materials Authority (NMA)) ;
  • Waheed H. Mohamed (Geology Department, Faculty of Science, Al-Azhar University) ;
  • Said A. Shetaia (Geology Department, Faculty of Science, Al-Azhar University) ;
  • Mohamed S. Ahmed (Geology and Geophysics Department, College of Science, King Saud University) ;
  • Sherif A. Taalab (Geology Department, Faculty of Science, Al-Azhar University) ;
  • Diaa A. Saadawi (Geology Department, Faculty of Science, Al-Azhar University) ;
  • Ahmed K. Sakr (Department of Chemistry and Biochemistry, The University of Hull) ;
  • Mayeen Uddin Khandaker (Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University) ;
  • A.Sh.M. Elshoukrofy (Faculty of Science, Damanhur University) ;
  • Mohamed Y. Hanfi (Nuclear Materials Authority (NMA))
  • Received : 2024.04.13
  • Accepted : 2024.06.11
  • Published : 2024.11.25

Abstract

The radiological and environmental hazards of Wadi El Markh granitic rocks were investigated, and magnetic data were used to delineate the structural framework and determine the bedrock depth in the area. The result displayed that geological structures influence the occurrence of uranium mineralization in this area and are mainly associated with altered granitic formations. The activity concentrations of radioisotopes in the regions studied showed a range of values: 238U varied between 345 and 1729 Bq.kg-1, averaging 980 Bq.kg-1; 232Th ranged from 73 to 162 Bq.kg-1, with an average of 120 Bq.kg-1; and 40K varied from 829 to 1790 Bq.kg-1, average 1245 Bq.kg-1. The measured concentrations of 238U, 232Th, and 40K in the analyzed granitic rocks samples exceeded the worldwide average of 35, 45, and 412 Bq.kg-1, respectively. The primary radiological risks related to these granitic rocks were associated with the gamma radiation emitted by the radioactive elements. The statistical assessment confirmed that the main contributors to the radiological risks were uranium, potassium, and associated minerals in the granitic rocks. The entire investigation region has been determined to exceed the permissible safe radiation dose rate limit of 1 mSv/year. As a result, the study determined that the granitic rocks in the surveyed area were deemed unsuitable for construction because of their elevated levels of radioactivity. The effects of pollution on the ecological system were evaluated using several ecological indices, including the Geoaccumulation index (Igeo), Contamination factor (CF), Degree of Contamination (Cd), Pollution Load Index (PLI), Potential ecological risk factor (Eri), and Potential Ecological Risk Index (RI). Based on Cd and PLI, 100 % of the samples were found to be very highly polluted to the ecological system and suggest deterioration if used. Regarding RI, the metals were arranged as Cd > As > Co > Cu > Pb > Cr > V > Zn, with considerable risk in all samples.

Keywords

Acknowledgement

This work is funded by the Researchers Supporting Project number (RSP2024R455), King Saud University, Riyadh, Saudi Arabia.

References

  1. A. Khalil, T.H.A. Hafeez, A. El kotb, H.S. Saleh, W.H. Mohamed, E. Takla, Subsurface structural characterization as deduced from potential field data-west Beni Suef, Western Desert, Egypt, Arabian J. Geosci. 15 (2022) 1627, https://doi.org/10.1007/s12517-022-10900-1. 
  2. M.M. Khalifa, W.H. Mohamed, M.A. El Ammawy, A.I. Taha, A. Awad, A.A. Orchid, Evaluation of the subsurface structural features of the Farafra Oasis, western desert, Egypt using aeromagnetic data, Model Earth Syst. Environ. 10 (2024) 723-733, https://doi.org/10.1007/s40808-023-01806-2. 
  3. A. Hossain, D. Hossain, R. Abdullah, Structural and stratigraphic interpretation of geophysical data of the Fenchuganj gas field in the Surma basin, Bangladesh, J. Geol. Soc. India 86 (2015) 148-154, https://doi.org/10.1007/s12594-015-0294-4. 
  4. Geosoft, Geosoft Mapping and Processing System, 2010. Toronto, Canda. 
  5. I.M. Ibraheem, E.A. Elawadi, G.M. El-Qady, Structural interpretation of aeromagnetic data for the Wadi El Natrun area, northwestern desert, Egypt, J. Afr. Earth Sci. 139 (2018) 14-25, https://doi.org/10.1016/j.jafrearsci.2017.11.036. 
  6. R. Abd El Rahman, S. Taalab, Z. Al Full, M. Mohamed, M. Sayyed, N. Almousa, M. Hanfi, Natural radionuclide levels and radiological hazards of khour abalea mineralized pegmatites, southeastern Desert, Egypt, Minerals 12 (2022) 353. https://doi.org/10.3390/min12030353. 
  7. W.H. Mohamed, M.H. Elyaseer, M.E.M. Sabra, Structural lineament analysis of the Bir El-Qash area, Central Eastern Desert, Egypt, using integrated remote sensing and aeromagnetic data, Sci. Rep. 13 (2023) 21569, https://doi.org/10.1038/s41598-023-48660-x. 
  8. A.M. El Mezayen, E.M. Ibrahim, M.G. El-Feky, S.M. Omar, A.M. El-Shabasy, S. A. Taalab, Physico-chemical conditions controlling the radionuclides mobilisation in various granitic environments, Int. J. Environ. Anal. Chem. 102 (2022) 970-986, https://doi.org/10.1080/03067319.2020.1729758. 
  9. A.M. Abdel-Rahman, H.M. El-Desoky, B.N.A. Shalaby, H.A. Awad, A. Ene, M. A. Heikal, H. El-Awny, W. Fahmy, S.A. Taalab, H.M.H. Zakaly, Ultramafic rocks and their alteration products from northwestern allaqi province, southeastern desert, Egypt: petrology, mineralogy, and geochemistry, Front. Earth Sci. 10 (2022), https://doi.org/10.3389/feart.2022.894582. 
  10. A.E. Omar, M.A.H. Sakr, S.A. Taalab, A.-B.A. Bakhit, M. Pugliese, G. La Verde, M. Y. Hanfi, Geotechnical and environmental radioactivity investigations at Al Sadis ¯ Min Uktober ¯ city, Cairo municipality (Egypt), for the high-speed railway construction, Appl. Radiat. Isot. 193 (2023) 110664, https://doi.org/10.1016/j.apradiso.2023.110664. 
  11. C.I. Adamu, T.N. Nganje, A. Edet, Major and trace elements pollution of sediments associated with abandoned barite mines in parts of oban massif and mamfe embayment, SE Nigeria, J. Geochem. Explor. 151 (2015) 17-33, https://doi.org/10.1016/j.gexplo.2014.12.010. 
  12. S.A. Taalab, H.M.H. Zakaly, V. Ivanov, A.W. Alrowaily, H.A. Awad, N.S. Abed, S.A. M. Issa, A.M. Eltohamy, A. Ene, Notable changes in geochemical and mineralogical characteristics of different phases of episyenitization: insights on the radioactive and shielding of the late phase, Front. Earth Sci. 11 (2023), https://doi.org/10.3389/feart.2023.1241975. 
  13. M. Tzortzis, H. Tsertos, S. Christofides, G. Christodoulides, Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks, Radiat. Meas. 37 (2003) 221-229, https://doi.org/10.1016/S1350-4487(03)00028-3. 
  14. S.A. Taalab, W.H. Mohamed, A.M. Abdel-Rahman, M.S. Alqahtani, G. La Verde, M. Pugliese, M.Y. Hanfi, F. Ambrosino, Distribution maps and hazard of radioelements from granitic rocks in an Egypt region, The European Physical Journal Plus 138 (2023) 828. https://doi.org/10.1140/epjp/s13360-023-04452-w. 
  15. R. Ravisankar, J. Chandramohan, A. Chandrasekaran, J.P. Prakash, I. Vijayalakshmi, P. Vijayagopal, B. Venkatraman, Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu , India with statistical approach, Mar. Pollut. Bull. (2015), https://doi.org/10.1016/j.marpolbul.2015.05.058. 
  16. S.A. Taalab, M. Al Meshari, Y. Alzamil, A. Abanomy, A.R. Alyahyawi, W. H. Mohamed, A. El-Taher, Radiological and ecological hazards evaluation of episyenite used as building materials, J. Radioanal. Nucl. Chem. 332 (2023) 2057-2075, https://doi.org/10.1007/s10967-023-08890-9. 
  17. UNSCEAR, Exposures from natural radiation sources (annex B), sources and effects of ionizing radiation, 84-141, https://doi.org/10.1097/00004032-199907000-00007, 2000. 
  18. A. Abu-Deif, M. El-Tahir, A new uranium occurrence, gabal El-Missikat prospect, central eastern desert, Egypt, J. King Abdulaziz Univ. - Earth Sci. 19 (2008) 85-97, https://doi.org/10.4197/Ear.19-1.5. 
  19. M.M.F. Ghoneim, A.E.S. Abdel Gawad, VEIN-TYPE URANIUM MINERALIZATION IN THE EASTERN DESERT OF EGYPT, News of the Ural State Mining University, 2018, pp. 33-38, https://doi.org/10.21440/2307-2091-2018-1-33-38. 
  20. S.I. Rabie, A.A. Abdel-Meguid, A.S. Assran, Geological and geophysical exploration for uranium mineralization in the El-Erediya prospect area, Central Eastern Desert, Egypt (1998) 169-189, https://doi.org/10.1007/978-94-011-5098-9_7. 
  21. S. Arunima, R. Lekshmi, P.J. Jojo, K. Mayeen Uddin, A study on leaching of primordial radionuclides 232Th and 40K to water bodies, Radiat. Phys. Chem. 188 (2021) 109658, https://doi.org/10.1016/j.radphyschem.2021.109658. 
  22. U.-K. Schkade, A. Heckel, H. Wershofen, Gamma Spectrometric Determination of the Activities of Natural Radionuclides γ-SPEKT/NATRAD, 2018. 
  23. M. Iqbal, M. Tufail, S.M. Mirza, Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer, J. Environ. Radioact. 51 (2000) 255-265, https://doi.org/10.1016/S0265-931X(00)00077-1. 
  24. Md.J. Abedin, Md.R. Karim, S. Hossain, N. Deb, M. Kamal, Md.H.A. Miah, M. U. Khandaker, Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln, Arabian J. Geosci. 12 (2019) 236, https://doi.org/10.1007/s12517-019-4355-7. 
  25. IAEA, Measurement of Radionuclides in Food and the Environment-Technical Reports, 1983. Vienna. 
  26. A. Abbasi, Radiation risk assessment of coastal biota from a quasi-Fukushima hypothetical accident in the Mediterranean Sea, Mar. Pollut. Bull. 194 (2023) 115363, https://doi.org/10.1016/j.marpolbul.2023.115363. 
  27. A. Papadopoulos, G. Christofides, A. Koroneos, L. Papadopoulou, C. Papastefanou, S. Stoulos, Natural radioactivity and radiation index of the major plutonic bodies in Greece, J. Environ. Radioact. 124 (2013) 227-238, https://doi.org/10.1016/j.jenvrad.2013.06.002. 
  28. International Atomic Energy Agency, Nuclear fuel cycle and materials section. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data, International Atomic Energy Agency, 2003. 
  29. M. Hasan, A. Hossain Chaity, A. Haydar, I. Ali, M. Uddin Khandaker, Elevated concentrations of terrestrial radionuclides in sand: an essential raw material used in Bangladeshi dwellings, Indoor Built Environ. 30 (2021) 1051-1061, https://doi.org/10.1177/1420326X20924835. 
  30. H.K. Shuaibu, M.U. Khandaker, T. Alrefae, D.A. Bradley, Assessment of natural radioactivity and gamma-ray dose in monazite rich black Sand Beach of Penang Island, Malaysia, Mar. Pollut. Bull. 119 (2017) 423-428, https://doi.org/10.1016/j.marpolbul.2017.03.026. 
  31. A. Abbasi, S.F. Mirekhtiary, Risk assessment due to various terrestrial radionuclides concentrations scenarios, Int. J. Radiat. Biol. 95 (2019) 179-185, https://doi.org/10.1080/09553002.2019.1539881. 
  32. A.A. Qureshi, S. Tariq, U. Kamal, S. Manzoor, C. Calligaris, A. Waheed, ScienceDirect Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan, J Radiat Res Appl Sci 7 (2014) 438-447, https://doi.org/10.1016/j.jrras.2014.07.008. 
  33. D.T. Thompson, EULDPH: a new technique for making computer-assisted depth estimates from magnetic data, Geophysics 47 (1982) 31-37, https://doi.org/10.1190/1.1441278. 
  34. Index Muller, Of geoaccumulation in sediments of the rhine river, J. Geol. 2 (1986) 108-118. 
  35. S.R. Taylor, Abundance of chemical elements in the continental crust: a new table, Geochem. Cosmochim. Acta 28 (1964) 1273-1285, https://doi.org/10.1016/0016-7037(64)90129-2. 
  36. E.A. Khallaf, M.M.N. Authman, A.A. Alne-na-ei, Contamination and ecological hazard assessment of heavy metals in freshwater sediments and Oreochromis niloticus (Linnaeus, 1758) fish muscles in a nile river canal in Egypt, Environ. Sci. Pollut. Control Ser. 25 (2018) 13796-13812, https://doi.org/10.1007/s11356-018-1521-5. 
  37. S.A. Shetaia, A.M. Abu Khatita, N.A. Abdelhafez, I.M. Shaker, S.B. El Kafrawy, Human-induced sediment degradation of Burullus lagoon, Nile Delta, Egypt: heavy metals pollution status and potential ecological risk, Mar. Pollut. Bull. 178 (2022) 113566, https://doi.org/10.1016/j.marpolbul.2022.113566. 
  38. Hakanson, An ecological risk index for aquatic pollution control, a sedimentological approach 14 (1980) 975-1001. 
  39. M.A.M. Uosif, L.M. Abdel-salam, An assessment of the external radiological impact in granites and pegmatite in central eastern desert in Egypt with elevated natural radioactivity, Radiat. Protect. Dosim. 147 (2011) 467-473, https://doi.org/10.1093/rpd/ncq448. 
  40. J.H. Al-Zahrani, Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia, J Radiat Res Appl Sci 10 (2017) 241-245, https://doi.org/10.1016/j.jrras.2017.05.001. 
  41. UNSCEAR, Sources and Effects of Ionizing Radiation - Exposures of the Public and Workers from Various Sources of Radiation - UNSCEAR 2008 Report, 2010. New York, http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf. 
  42. R.M. Amin, Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites, Environ. Earth Sci. 67 (2012) 771-775, https://doi.org/10.1007/s12665-012-1538-x. 
  43. C. Sabbarese, F. Ambrosino, A.D. Onofrio, V. Roca, Radiological characterization of natural building materials from the Campania region (Southern Italy), Construct. Build. Mater. (2020) 121087, https://doi.org/10.1016/j.conbuildmat.2020.121087. 
  44. UNSCEAR, SOURCES and EFFECTS of IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation, 2010. 
  45. USEPA, EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population, 2011. 
  46. N.A.M. Alsaif, M. Alotiby, M.Y. Hanfi, M.I. Sayyed, K.A. Mahmoud, B.M. Alotaibi, H.A. Alyousef, Y. Al-Hadeethi, A comprehensive study on the optical, mechanical, and radiation shielding properties of the TeO2-Li2O-GeO2 glass system, J. Mater. Sci. (2021) 15226-15241. https://doi.org/10.1007/s10854-021-06074-3. 
  47. N.A.M. Alsaif, M. Alotiby, M.Y. Hanfi, K.A. Mahmoud, H.A. Al-Yousef, B. M. Alotaibi, M.I. Sayyed, Y. Al-Hadeethi, Comprehensive study of radiation shielding and mechanical features of Bi2O3-TeO2-B2O3-GeO2 glasses, J. Australian Ceram. Soc. 57 (2021) 1267-1274. https://doi.org/10.1007/s41779-021-00623-z. 
  48. A.M. El Mezayen, E.K. Abu Zeid, W.S. Hosny, M.G. El-Feky, S.M. Omar, S. A. Taalab, Geochemistry, mineralogy, and radioactivity of the Abu Furad Area, Central Eastern Desert, Egypt, Acta Geochim. 38 (2019) 307-326. https://doi.org/10.1007/s11631-018-0302-7.