DOI QR코드

DOI QR Code

6 MV X-band linear accelerator for stereotactic body radiation therapy

  • Donghyup Ha (Sungkyunkwan University, Department of Electrical and computer Engineering) ;
  • SeungHyun Lee (Nuclear Physics Application Research Division, Korea Atomic Energy Research Institute) ;
  • Mitra Ghergherehchi (Sungkyunkwan University, Department of Electrical and computer Engineering) ;
  • Hyojeong Choi (Sungkyunkwan University, Department of Electrical and computer Engineering) ;
  • Ho Namgoong (Sungkyunkwan University, Department of Electrical and computer Engineering) ;
  • Jongchul Lee (Advanced Research Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jong-Seo Chai (Sungkyunkwan University, Department of Electrical and computer Engineering)
  • 투고 : 2023.07.18
  • 심사 : 2024.06.09
  • 발행 : 2024.11.25

초록

This paper presents the development process of a high-dose X-band linear accelerator (LINAC) for radiotherapy machines, specifically focusing on stereotactic body radiation therapy (SBRT). The development process includes a multi-physics design, approach for the radio frequency cavity in the LINAC, with an emphasis on minimizing beam size and maximizing shunt impedance of the LINAC. Commissioning tests were conducted to evaluate the performance of the LINAC, which involved measurements of beam energy, beam size, beam current, and X-ray dose rate.

키워드

과제정보

This work was supported by a Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT) (Project Number:1711135001, KMDF_PR_20200901_0042). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00221186).

참고문헌

  1. S. Soderstrom, A. Eklof, A. Brahme, Aspects on the optimal photon beam energy for radiation therapy, Acta Oncol. 38 (2) (1999) 179-187.  https://doi.org/10.1080/028418699431591
  2. G. Solaiappan, G. Singaravelu, A. Prakasarao, B. Rabbani, Influence of photon beam energy on IMRT plan quality for radiotherapy of prostate cancer, Rep. Practical Oncol. Radiother. 14 (1) (2009) 18-31. https://doi.org/10.1016/S1507-1367(10)60019-3
  3. L. Wang, E. Yorke, G. Desobry, C.S. Chui, Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries, J. Appl. Clin. Med. Phys. 3 (1) (2002) 51-59.  https://doi.org/10.1120/jacmp.v3i1.2592
  4. www.accuray.com. 
  5. www.varian.com. 
  6. S.W. Shin, S.H. Lee, J.C. Lee, H. Kim, D.Ghergherehchi Ha, J. Chai, et al., Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system, J. Kor. Phys. Soc. 71 (2017) 1048-1055.  https://doi.org/10.3938/jkps.71.1048
  7. S.W. Shin, S.H. Lee, S. Oh, D. Ha, M. Ghergherehchi, J. Chai, et al., Measurement of characteristic of X-band RF cavity for 6 MeV electron linac, J. Kor. Phys. Soc. 72 (2018) 818-825.  https://doi.org/10.3938/jkps.72.818
  8. S.H. Lee, S.W. Shin, J. Lee, H.S. Kim, B.N. Lee, B.C. Lee, J.S. Chai, et al., X-band Linac for a 6 MeV dual-head radiation therapy gantry, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 852 (2017) 40-45.  https://doi.org/10.1016/j.nima.2016.11.034
  9. J.H. Kim, K.A. Jenrow, S.L. Brown, Novel biological strategies to enhance the radiation therapeutic ratio, Radiation Oncology Journal 36 (3) (2018) 172. 
  10. J.Y. Luh, K.V. Albuquerque, C. Cheng, R.P. Ermoian, N. Nabavizadeh, H. Parsai, A. Hartford, et al., ACR-ASTRO practice parameter for image-guided radiation therapy (IGRT), Am. J. Clin. Oncol. 43 (7) (2020) 459-468.  https://doi.org/10.1097/COC.0000000000000697
  11. M.S. Kim, J.Y. Jung, D.K. Yoon, H.B. Shin, T.S. Suh, J.H. Jung, The first step towards a respiratory motion prediction for natural-breathing by using a motion generator, J. Kor. Phys. Soc. 70 (2017) 621-628.  https://doi.org/10.3938/jkps.70.621
  12. J.M. Brown, D.J. Carlson, D.J. Brenner, The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int. J. Radiat. Oncol. Biol. Phys. 88 (2) (2014) 254-262.  https://doi.org/10.1016/j.ijrobp.2013.07.022
  13. C.L. Tsai, F.M. Hsu, J.C.H. Cheng, How to improve therapeutic ratio in radiotherapy of HCC, Liver Cancer 5 (3) (2016) 210-220.  https://doi.org/10.1159/000367767
  14. J.D. Zindler, C.R. Thomas Jr, S.M. Hahn, A.L. Hoffmann, E.G. Troost, P. Lambin, Increasing the therapeutic ratio of stereotactic ablative radiotherapy by individualized isotoxic dose prescription, J. Natl. Cancer Inst. 108 (2) (2016) djv305. 
  15. H.M. Petroccia, I. Malajovich, A.R. Barsky, A.F. Ghiam, J. Jones, C. Wang, T. Li, et al., Spine SBRT with HalcyonTM: plan quality, modulation complexity, delivery accuracy, and speed, Front. Oncol. 9 (2019) 319. 
  16. P. Bonomo, S. Cipressi, I. Desideri, L. Masi, R. Doro, C. Iermano, L. Livi, et al., Stereotactic body radiotherapy with CyberKnife for cardiac malignancies, Tumori Journal 101 (3) (2015) 294-297.  https://doi.org/10.5301/tj.5000280
  17. B.T. Huang, Z. Lin, P.X. Lin, J.Y. Lu, C.Z. Chen, Monitor unit optimization in stereotactic body radiotherapy for small peripheral non-small cell lung cancer patients, Sci. Rep. 5 (1) (2015) 18453. 
  18. N.T. Sebastian, M. Xu-Welliver, T.M. Williams, Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC): contemporary insights and advances, J. Thorac. Dis. 10 (Suppl 21) (2018) S2451. 
  19. M. Shi, E. Simiele, B. Han, D. Pham, P. Palomares, M. Aguirre, N. Kovalchuk, et al., First-year experience of SBRT/IMRT treatment using a novel biology guided radiotherapy machine, Advances in Radiation Oncology (2023) 101300. 
  20. C. Tang, H. Chen, Y. Liu, Electron Linacs for cargo inspection and other industrial applications, Power 10 (44kV) (2009) 11kV. 
  21. H.B. Zhao, R. Carter, C.D. Hannaford, P. Zhou, E.A. Hughes, The improvement of the output performance of a low energy medical standing wave accelerator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 356 (2-3) (1995) 552-557.  https://doi.org/10.1016/0168-9002(94)01248-2
  22. L. A. A. C. Group, Poisson/Superfish, https://laacg.lanl.gov/. 
  23. Desy, A Space Charge Tracking Algorithm (ASTRA), https://www.desy.de/~mpyflo/. 
  24. Dassault Systemes, CST Microwave Studio, https://www.3ds.com/. 
  25. Y. Kamino, S. Miura, M. Kokubo, I. Yamashita, E. Hirai, M. Hiraoka, J. Ishikawa, Development of an ultrasmall-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, Med. Phys. 34 (5) (2007) 1797-1808.  https://doi.org/10.1118/1.2723878
  26. J. Mondal, S. Chandan, S. Parashar, D. Bhattacharjee, A.R. Tillu, R. Tiwari, V. T. Nimje, et al., Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 795 (2015) 343-350.  https://doi.org/10.1016/j.nima.2015.06.011
  27. H. Yang, S.H. Kim, S.J. Park, J.S. Oh, M. Cho, W. Namkung, Transverse RF focusing in bunching cells for standing-wave linac, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 703 (2013) 145-151.  https://doi.org/10.1016/j.nima.2012.11.113
  28. J. Gao, Analytical formula for the coupling coefficient β of a cavity-waveguide coupling system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 309 (1-2) (1991) 5-10.  https://doi.org/10.1016/0168-9002(91)90085-5
  29. J.C. Slater, Microwave electronics, Rev. Mod. Phys. 18 (4) (1946) 441.