DOI QR코드

DOI QR Code

Systematic analysis for the thermal stability assessment of 166Ho production using HANARO: An in silico study

  • Taeyun Kim (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Bo-Young Han (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Seongwoo Yang (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Jaegi Lee (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Gwang-Min Sun (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Byung-Gun Park (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Sung-Joon Ye (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University)
  • Received : 2024.04.02
  • Accepted : 2024.07.01
  • Published : 2024.11.25

Abstract

Medical radioisotopes (RIs) are widely used in the diagnosis and treatment of tumors. Theranostic RIs, such as 131I, 166Ho, 177Lu, and 186Re, are particularly notable for their ability to enable diagnosis and treatment simultaneously. Conducting irradiation tests using the High-flux Advanced Neutron Application Reactor (HANARO), a 30-MW multipurpose research reactor, enables the production of these medical RIs. Prior to irradiation tests, it is crucial to assess whether they affect the thermal stability of irradiated materials and the thermal-hydraulic safety of HANARO. This study systematically investigates the feasibility of 166Ho production using the isotope production irradiation hole of HANARO, focusing on thermal stability. The nuclear heating rates of the RI production target and RI capsule are calculated using MCNP6, and the calculated nuclear heating rates are used for three-dimensional heat transfer analysis using COMSOL Multiphysics. Under the assumed conditions in this study, 166Ho production did not compromise the thermal stability of the RI production target and RI capsule; consequently, the thermal-hydraulic safety criteria of HANARO could be satisfied. This study can serve as a valuable reference for evaluating the thermal stability of irradiated materials and the thermal-hydraulic safety of HANARO, which must be performed before irradiation tests using HANARO.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF2021M2E7A2079439) and the Korea government (MSIT) (No. 1711078081).

References

  1. H. Kim, H.R. Kim, K.H. Lee, J.B. Lee, Design characteristics and startup tests of HANARO, J. Nucl. Sci. Technol. 33 (1996) 527-538. https://doi.org/10.1080/18811248.1996.9731952
  2. K.N. Choo, M.S. Cho, S.W. Yang, S.J. Park, Contribution of HANARO irradiation technologies to national nuclear R&D, Nucl. Eng. Technol. 46 (2014) 501-512. https://doi.org/10.5516/NET.07.2014.006
  3. S.K. Lee, S. Lee, M. Kang, K. Woo, S.W. Yang, J. Lee, Development of fission 99Mo production process using HANARO, Nucl. Eng. Technol. 52 (2020) 1517-1523. https://doi.org/10.1016/j.net.2019.12.019
  4. G.M. Sun, J. Lee, Y.R. Uhm, H. Baek, An investigation of excretion of calcium from female mice ingested with boron by using neutron activation analysis, Nucl. Eng. Technol. 52 (2020) 2581-2584. https://doi.org/10.1016/j.net.2020.04.010
  5. T. Kim, B.Y. Han, S.W. Yang, J. Lee, G.M. Sun, B.G. Park, S.J. Ye, Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: a feasibility study, Nucl. Eng. Technol. 55 (2023) 3996-4001.
  6. C.H. Yeong, M.H. Cheng, K.H. Ng, Therapeutic radionuclides in nuclear medicine: current and future prospects, J. Zhejiang Univ. - Sci. B. 15 (2014) 845-863. https://doi.org/10.1631/jzus.B1400131
  7. A. Yordanova, E. Eppard, S. Kurpig, R.A. Bundschuh, S. Schonberger, M. Gonzalez-Carmona, G. Feldmann, H. Ahmadzadehfar, M. Essler, Theranostics in nuclear medicine practice, Onco. Targets, Therapy 10 (2017) 4821-4828. https://doi.org/10.2147/OTT.S140671
  8. N.J.M. Klaassen, M.J. Arntz, A.G. Arranja, J. Roosen, J.F.W. Nijsen, The various therapeutic applications of the medical isotope holmium-166: a narrative review, EJNMMI Radiopharm, Chem 4 (2019) 1-26. https://doi.org/10.1186/s41181-018-0054-z
  9. S. Lahiri, K.J. Volkers, B. Wierczinski, Production of 166Ho through 164Dy(n,γ)165Dy (n,γ)166Dy(β-)166Ho and separation of 166Ho, Appl. Radiat. Isot. 61 (2004) 1157-1161. https://doi.org/10.1016/j.apradiso.2004.03.117
  10. B.C. Lee, Analysis on the Detailed Heat Generation Rate for the HANARO, Korea Atomic Energy Research Institute, 2008. KAERI/TR-3643/2008.
  11. M. Verpelli, L. Vrapcenjak, LiveChart of nuclides. https://www-nds.iaea.org/livechart/2020,InternationalAtomicEnergyAgency,NuclearDataSection. (Accessed 1 March 2024).
  12. F. Ahsan, J. Razmi, L. Ladani, Experimental measurement of thermal diffusivity, conductivity and specific heat capacity of metallic powders at room and high temperatures, Powder Technol. 374 (2020) 648-657. https://doi.org/10.1016/j.powtec.2020.07.043
  13. J. Romano, L. Ladani, J. Razmi, M. Sadowski, Temperature distribution and melt geometry in laser and electron-beam melting processes - a comparison among common materials, Addit. Manuf. 8 (2015) 1-11.
  14. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Initial MCNP6 release overview, Nucl. Technol. 180 (2012) 298-315. https://doi.org/10.13182/NT11-135
  15. B.G. Park, G.D. Kang, M.S. Kim, T. Noh, Evaluation of Nuclear Heating Rate by Delayed Gamma Rays from Fission Products of HANARO, Korea Atomic Energy Research Institute, 2018. KAERI/TR-7239/2018.
  16. T. Noh, B.G. Park, M.S. Kim, Estimation of nuclear heating by delayed gamma rays from radioactive structural materials of HANARO, Nucl. Eng. Technol. 50 (2018) 446-452. https://doi.org/10.1016/j.net.2018.01.010
  17. J.L. Conlin, W. Haeck, D. Neudecker, D.K. Parsons, M.C. White, Release of ENDF/B-VIII. 0-based ACE Data Files, Los Alamos National Laboratory, 2018. LA-UR-18-24034.
  18. E.J.F. Dickinson, H. Ekstrom, E. Fontes, COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review, Electrochem. Commun. 40 (2014) 71-74. https://doi.org/10.1016/j.elecom.2013.12.020
  19. L.L.C. MatWeb, Material property data. http://www.matweb.com/2016. (Accessed 1 March 2024). Access date.
  20. V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods, J. Nucl. Mater. 281 (2000) 84-89. https://doi.org/10.1016/S0022-3115(00)00129-X
  21. R.B. Firestone, H.D. Choi, R.M. Lindstrom, G.L. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, Z. R'evay, A. Trkov, C.M. Zhou, V. Zerkin, Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, International Atomic Energy Agency, 2004.
  22. Q. Pan, Q. Zhao, L. Wang, B. Xia, Y. Cai, X. Liu, Rapid diagnostic method for transplutonium isotope production in high flux reactors, Nucl. Sci. Tech. 34 (2023) 44.
  23. Q. Zhao, Q. Pan, L. Wang, B. Xia, Y. Cai, X. Liu, J. Xiong, Neutron spectrum optimization for Cf-252 production based on key nuclides analysis, Radiat. Phys. Chem. 214 (2024) 111294.
  24. Q. Pan, Q. Zhao, L. Wang, B. Xia, Y. Cai, J. Xiong, X. Liu, High-resolution neutronics model for 238Pu production in high-flux reactors, Nucl. Sci. Tech. 35 (2024) 88.